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Abstract

The problem of a low-frequency acoustic plane wave incident upon a free surface coupled
to a semi-infinite elastic plate surface, is solved using an analytic approach based on the
Wiener-Hopf method. By low-frequency it is meant that the elastic properties of the plate

are adequately described by the thin plate equation (kH "< 1). The diffraction problem

relates to issues in long range sound propagation through partially ice-covered Arctic waters,
where open leads or polynya on the surface represent features from which acoustic energy

can be diffracted or scattered. This work focusses on ice as the material for the elastic plate
surface, and, though the solution methods presented here have applicability to general edge

diffraction problems, the results and conclusions are directed toward the ice lead diffraction
process.

The work begins with the derivation of an exact solution to a canonical problem: a
plane wave incident upon a free surface (Dirichlet boundary condition) coupled to a per-

fectly rigid surface (Neumann boundary condition). Important features of the general edge
diffraction problem are included here, with the solution serving as a guideline to the more

complicated solutions presented later involving material properties of the boundary. The

ice material properties are first addressed using the locally reacting approximation for the

input impedance of an ice plate, wherein the effects of elasticity are ignored. This is fol-

lowed by use of the thin plate equation to describe the input impedance, which incorporates
elements of elastic wave propagation.



An important issue in working with the thin plate equation is the fluid loading pertaining
to sea ice and low-frequency acoustics, which cannot be characterized by simplifying heavy
or light fluid loading limits. An approximation to the exact kernel of the Wiener-Hopf
functional equation is used here, which is valid in this mid-range fluid loading regime. Use
of this approximate kernel allows one to proceed to a complete and readily interpretable
solution for the far field diffracted pressure, which includes a subsonic flexural wave in the

ice plate. By using Green's theorem, in conjunction with the behavior of the diffracted
field along the two-part planar boundary, the functional dependence of liD (total diffracted
power) in terms of k (wavenumber), H (ice thickness), a (grazing angle) and the combined
elastic properties of the ice sheet and ambient medium, is determined.

A means to convert HD into an estimate of dB loss per bounce is developed using ray
theoretical methods, in order to demonstrate a mechanism for acoustic propagation loss
attributed directly to ice lead diffraction effects. Data from the 1984 MIZEX (Marginal
Ice Zone Experiments) narrow-band acoustic transmission experiments are presented and
discussed in this context.

Thesis Supervisor: George V. Frisk
Title: Assoc. Scientist, Woods Hole Oceanographic Institution
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Chapter 1

Introduction

In the study of range dependent problems in ocean acoustics, one often works with solution

techniques which assume slowly-varying changes in the acoustic boundaries or the ambient

medium, such as the parabolic equation method [39] or methods based on the adiabatic

approximation [33]. Many problems exist for which acoustic environmental changes can

occur abruptly, as in geological features on the ocean floor, or an open lead in the Arctic ice

canopy. Here the diffraction process is a primary result of the range dependent feature, and

solutions dependent upon these features being slowly-varying usually fall short in describing

diffractive effects. For these problems a more numerically intensive approach is often used,

for example, a finite difference solution for the discretized wave equation in heterogeneous

media, which can model various seafloor diffractors in two-dimensional geometry [24].

This thesis studies in detail, and presents an analytical solution to the problem of an

acoustic plane wave interacting with a free surface coupled to a semi-infinite elastic surface.

The essential physics of the acoustic diffraction process such as mode coupling and edge

diffractive effects due to the abrupt boundary change, are included in the solution. The

problem relates directly to long range sound propagation in Arctic waters, where there is

a mixture of open water and ice as in the marginal ice zone. Here, the upward refracting

sound channel causes repeated interaction with the discontinuous ice canopy surface, and

open leads or polynyas on this surface represent features from which acoustic energy can

be diffracted or scattered [52] and thereby lost from the acoustic channel. We therefore

focus on ice as the material for the elastic surface or plate, and, though our methods have

13
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Figure 1.I: Diffraction from two semi-infinite half-planes each characterized by a different
boundary condition; the incident field is a plane wave with grazing angle a.

applicability to general edge diffraction problems, our results and conclusions are directed

towards the ice lead diffraction process.

The semi-infinite plate model for the ice lead diffraction process belongs to a class of two-

dimensional diffraction problems known as half-plane problems. Probably the most well-

known solution in this class is Sommerfeld's solution of the scattering of a plane wave from

an infinitely hard half-plane [58], or the "knife edge" problem. Closely related to problems

associated with a single semi-infinite half-plane are those involving two coupled half-planes

(Fig. 1.1), where different boundary conditions are prescribed on each semi-infinite half-

plane. Diffraction problems of this type can be shown, by using a Green's theorem approach,

to reduce to a particular boundary integral equation amenable to analytic or closed form

solutions using the Wiener-Hopf method [59]. In this thesis we employ the Wiener-Hopf

method to examine the ice lead diffraction process. A key attribute of such an approach

is that it is not fundamentally numerical in nature and allows additional insight into the

mathematical and physical structure of the acoustic field due to range discontinuities.

Single and coupled half-plane diffraction problems have been extensively studied in

electromagnetics and acoustics using techniques based on the Wiener-Hopf method. Senior

15



(1952)1641 presents the solution of the diffracted field due to a electromagnetic plane wave

field incident upon a semi-infinite metallic sheet. Heins and Feshbach (1947) 1351 present a

solution of an acoustic plane wave incident upon two coupled half-planes where each surface

is characterized by a different complex admittance parameter. Bazar and Karp (1957) [5]

have examined a similar two-part problem involving electromagnetic wave propagation over

land and sea, known as the "land/sea" problem. Lamb (1958) [46 studied the problem

of plane wave diffraction from a semi-infinite elastic plate under conditions of light fluid

loading. More recently Cannell (1975,1976) (12,11] and Crighton and Innes (1983) [211 have

examined similar plane wave scattering problems for both the heavy and light fluid loading

limits.

1.1 Overview of Thesis

We begin in Chapter 2 with the solution of a canonical problem: a plane wave incident upon

a surface where the boundary condition changes from Dirichlet (free surface) to Neumann

(perfectly rigid surface). The boundary conditions addressed in this problem are highly

idealized with respect to the ice lead diffraction process. Nevertheless, important features

of the general diffraction process are produced here, with this solution forming the baseline

structure for the solution of more complicated problems to follow. Since the solution is

expressed in terms of the Fourier transform of the diffracted field, it will also lay out in a

straight forward way a pathway for inversion which is utilized in the rest of the thesis.

Chapter 3 begins with a discussion of the input impedance of ice, in the context of

locally and non-locally reacting surfaces. Next the solution of a plane wave incidenL upon

a finite impedance, locally reacting surface is presented following the pathway developed

in Chapter 2. An advantage of our method over those previously mentioned involving

Wiener-Hopf methods, is that we have approximated a step in the Wiener-Hopf solution

procedure known as the kernel decomposition. In all but the simplest Wiener-Hopf type

equations the exact decomposition, available in principle, leads to a degree of complexity in

the solution that hinders practical implementation of the results. The approximate kernel

and decompostion used here is very accurate and allows us to proceed to interpretable

16



results. Finally, a power balance for a plane wave incident upon a free surface joined to a

locally reacting surface is demonstrated.

In Chapter 4 we solve the problem of a plane wave incident upon a semi-infinite elastic

plate capable of supporting a subsonic flexural wave. A key issue here is the fluid loading

pertaining to the elastic sea ice and low frequency acoustics, which cannot be characterized

by the simplifying heavy or light fluid loading limits. A new approximate kernel decom-

position introduced here allows us to complete the solution in this neither light nor heavy

fluid loading regime.

In Chapter 5 we shall demonstrate one of several potential means to implement results

from our solution in the analysis of acoustic propagation data. Data from the 1984 MIZEX

(Marginal Ice Zone Experiments) narrow-band acoustic transmission experiments (25-200

Hz) are presented here. These data, which are a result of acoustic prcjpagatiun via a partially

ice-covered path, are compared to estimates of transmission loss based on ray theoretical

methods which include an additional loss due to diffraction effects from a surface with open

leads.

17



Chapter 2

Canonical diffraction problem

This chapter presents the exact solution of a canonical two-dimensional diffraction problem:

a monochromatic acoustic plane wave incident upon a surface where the boundary condition

changes from Dirichlet (free surface) to Neumann (perfectly rigid surface). The problem,

though highly idealized, nevertheless shares some similarities to the free surface to ice

canopy surface boundary change. Furthermore, it allows us to lay out, without unnecessary

complications the notation and problem geometry used in this thesis and important details

and results of the Wiener-Hopf procedure from which later results in this thesis will be

based upon.

2.1 Solution of canonical diffraction problem

Consider a plane wave with grazing angle a incident upon a planar surface (Fig. 2.1) with

the following mixed boundary conditions

Or(X,0) =0 X < 0 (21)

and
= 0 X > o, (2.2)

where OT is the total acoustic velocity potential, and 01 is the incident potential with an

assumed harmonic time dependence e- w.
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)(r

Figure 21: Canoncial diffraction problem and field coordinate system used in this thesis.
Note that the ambient medium is above the planar boundary with vacuum below. The
field is assumed to be independent of the z-coordinate which points out of the page. The
incident field is a Dlane wave with grazing angle a.

The total potential can be expressed as the coherent sum of 01, the reflected potential

OjR, and the diffracted potential OD

OT = 1 + OR + OD (2.3)

with

4Or(z, Y) = e ikxco e -ikysina (2.4)

and

( = k (X V+)ki= (2.5)

The free-space wavenumber is

k - k, + ik2  kj,k 2 > 0 (2.6)
C

with c the sound speed in the ambient acoustic medium which is in general complex with

negative imaginary part, and w = 2;rf. The small imaginary part in k allows for dissipation

in the ambient medium and is useful, but not necessary, to more clearly define the regions

of analyticity in the Wiener-Hopf procedure. In this thesis all final results reported will
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be with k2 = 0. The reflected field is the one corresponding to an perfectly rigid or 'hard'

surface but which we apply to the entire boundary. Whether we set up the problem with

a free surface reflected field or hard surface reflected field makes no difference, since the

final result compensates for this. In this problem the reflection coefficient moduli for each

half of the boundary are unity but the phases differ by 7r, resulting in a discontinuity in

the coherent sum of 01 and OR, located along the line dividing specular reflection from the

two different surfaces. This line is a radial line extending from 9 = 7r - a (Fig.( 2.1)); to

the left of this line the reflected field originates from the free surface boundary, and to the

right the reflected field originates from the hard surface boundary. Thus a diffracted field

is generated in order to restore continuity of the field and maintain the mixed boundary

conditions.

If we incorporate the hard boundary reflected field, which together with (01 satisfies only

part of a two-part boundary value problem, the properties of OD on the boundary must

therefore necessarily be

OD (x,0) = -2ei kz °cos x < 0 (2.7)

and
a OD(X, 0)

a( -- 0 X > 0 ( 2 8 )

in order to maintain the boundary conditions.

We assume OD takes the following form which satisfies the homogeneous Helmholtz

equation

OD(X,Y) = _G (q)eq'e - Y'~q 9- k2 ±- (2.9)fo0 27r

where G(q) is an unknown spectral function and is the Fourier transform of OD(X,0). The

variable q is the complex horizontal wavenumber, where the horizontal spatial coordinate x

and q are conjugate Fourier transform variables.

Note the difference between the scattering from a periodic surface [711 and this case. For

the periodic surface the scattered field consists of discrete angles, or scattering orders, which

are both real and complex. The increment between each angle is inversely proportional to

the spatial period of the surface. For the two coupled half-planes, the spatial period is

infinite and the discrete angles have formed a continuum as expressed by G(q). Each
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Figure 2.2: The branch cuts for the square root of q2 - k2 defining strip between ±k2 in
the complex q plane.

scattering order in the periodic case is weighted by a plane wave reflection coefficient; here

G(q) serves as the weighting function for a continuous distribution of plane waves.

In order for the integral in Eq.( 2.9) to be convergent we specify the branch cuts of

VTk 7 such that

Real( / 2 
- k2 ) > 0. (2.10)

This will occur for any inversion contour within the strip between ±k2 in Fig. 2.2. In the

case k2 --4 0 the inversion contour approaches the real-q axis and the inversion contour is

indented around any poles or branch points which lie on the real axis.

The Fourier transform definitions used in this thesis will be such that,

G(q) = f OD(z,O)e-'qzd, + jo D(z,O)e-izqdx = G+(q) + G_(q). (2.11)

The + or - subscripts in Eq.( 2.11) denote the region of analyticity, either the upper or

lower mathematical half-planes, of a function in the complex q plane. For example, G+(q)

can exist only for lm(q) > 0; otherwise the exponential term in the Fourier transform is

unbounded at x = -oo. We can also write formally that

G(q) = f n(,O)e-'9 'dz (2.12)
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and

- q2. k2G(q) J OD ) . (2.13)
a y

Thus, applying the semi-infinite transform definition to what is known about OD(X,O)

[Eq.( 2.7)] gives,

- 2Jo eikz cos -Iqzd+G-(q) (q-2kcos) + G_(q). (2.14)

The first term in Eq.( 2.14) is by definition a '+' function. That is, its existence requires

lm(q) > k2 coset, and thus the region of analyticity is delineated by a line parallel to the

real-q axis but passing just above the pole at q = k cos or. Similarly, applying what is known

about '"zO) [Eq.( 2.8)1 leads to,

- 20G(q) =L+d(q) = L+(q). (2.15)

The functions G_ (q) and L+(q) are unknown, with the latter representing the semi-infinite

(z < 0) transform of the normal derivative of CD(x,0). Eliminating G(q) from Eqs. (2.14)

and ( 2.15) gives

2i
- L.(q) = (q- kcosa) Vq 2 - kV +G-(q) q 2 -k (2.16)

The above is the Wiener-Hopf functional equation where

K(q) = V 2 - k (2.17)

is the kernel of the equation. The Wiener-Hopf functional equation can be reached by

several different pathways. For example, a Green's function approach together with the

convolution theorem [59,, would have required the Fourier transform of the Hankel functio,,

along the boundary which is the same form as our kernel. We have used Jones's Method !42

to arrive at this equation which works directly from the Fourier transform of the boundary

conditions that govern the problem.

The essence of the Wiener-Hopf procedure is to factorize or decompose this kernel into

two factors, one analytic in an upper half-plane and the other analytic in a lower half-

plane of the complex q plane. A successful decomposition will, as we shall see, allow us to

recover G(q) and thus the Fourier transform of OD(z,Y). In this case the decompcsition is
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immediate: because the branch line for extends from the point q = k, + ik 2 into

an upper half of the q plane, this function is only free of singularities, or analytic, in some

lower half of the q plane. The region of analyticity is thus defined as Im(q) < k2 and is

delineated by a line running parallel to the real-q axis but passing just below Im(q) = k 2.

Thus VV77T is a '-' function and in a similar manner a '+' function and analytic

for Im(q) > k2 Upon decomposing the kernel we have

L+(q)-2:L+(q) + Vq- kG_-(q) 2(q kcosa) -k. (2.18)

The term on the right side of Eq.( 2.18) is neither a '+' nor '-' function, so it is split

into two terms

R(q) = R_(q) + R+(q) (2.19)

where

R_ (q) V- (q _i - Vo c - os - k] (2.20)
(q-kcos )~

and

R+(q) 2ikcos - k
(q- kcos) (2.21)

This is known as additive decompostion [141, In R_ (q) the effect of the pole at q = k cos a

is cancelled and R_(q) remains analytic in a lower half-plane as defined by Irn(q) < k2;

R+ (q) is analytic in an upper half-plane as defined by Im(q) > k2 cos a.

The functions L..(q) and G_(q) are unknown but their regions of analyticity can be

inferred. For example, consider

OD(X,o) - - oc. (2.22)

Then, in order for the semi-infinite Fourier transform to exist, G_(q) can be analytic only

for Im(q) < k2 , this fact being independent of any algebraic dependence of oD(X,O). In

a similar manner L+(q) can be analytic only for Im(q) > -k 2 . When k2 shrinks to zero

these domains of analyticity occur just below and just above the real-q axis. Upon using

the additive decompostion we have

L+ (q)q R+ (q) = R_ (q) - \/ - k G_(q) = E(q). (2.23)
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L + V q + k R +k c o s ,,-

qk G

Figure 2.3: The common region of analyticity (shaded) in the complex q plane. Arrows
with open ends mean that a half-plane is delineated here but the analytic region does not
include the actual line.

In Eq.( 2.23) everything on the left side is analytic in an upper half-plane while everything

on the right side is analytic in a lower half-plane of the q plane. A common region of

.-. lyticity exists, i.e., the strip in Fig. 2.3, and by analytic continuation E(q) must be

analytic in the entire finite complex q plane; thus, E(q) is an entire function. Determining

the nature of E(q) as jqj -* oo allows us to recover the unknowns in Eq.( 2.23).

2.1.1 Edge conditions, Liouville's theorem and recovery of G(q)

The nature of E(q) as jqj - oo is determined by the behavior of the quantities in Eq.( 2.23)

as jqj --+ oo. Since L+ and G- are unknowns, their behavior is a-wcertained through the

behavior of the equivalent transform as x -- 0. This is a property of Fourier and Laplace

transforms in which global properties in one domain are mapped to local properties in the

other domain.

'I he local properties we require are known as edge conditions. The edge conditions invoke

the appropriate physical constraints on the diffracted field near the edge of the boundary

24



discontinuity e.g., the diffracted field can not act as a source and radiate energy on its own

account [411. Thus, for example, let OD(Z,O) - z', v > 0 as z -- 0+ [59], which is a very

general requirement of OD. The corresponding transform behavior of G (q) as jqj - oo,

using a result from Abelian asympotics [61) is

G_(q) - x etv z ~ jq- ' - 1. (2.24)

Also, the velocity can have no more than an integrable singularity at the origin [19], which
-o =L

in this case calls for X zT as x - 0+, and from Abelian asymptotics this gives
L+(q) -, jqj r as jqj --- oo.

The nature of E(q) as Iqj - oo is now determined by application of Liouville's theorem.

Let F_(q) and F+(q) represent the combinations of '-' and '+' functions in Eq.( 2.23).

Liouville's theorem states that if

IF-(# < Iqlr , q -- oo (2.25)

and

IF+(q)l < qi°, q - co (2.26)

where it is assumed q - oo in the appropriate half-plane, then E(q) is a polynomial of

degree less than or equal to the integer part of min(r,s). If either r or s is negative, then

E(q) must vanish at infinity and E(q) is identically zero. Liouville's theorem has many

stated versions, the one used here is the most explicit and is a paraphrase of Noble [591.
Having determined the behavior to L+ and G- as IqI - oo, one sees that both sides

of Eq.( 2.23) vanish as q -- oo, for example, the '-' side behaves at most as - qj as

jqj --+ oo. This means the entire function E(q) vanishes at infinity and is therefore identically

zero, giving the result

-(q)= R_(q) L+(q)= R+(q) (2.27),/ --k N/q- -

Finally, using Eq. ( 2.14) we have

- 2i
G(q) = -2i Vkcosa- k. (2.28)

Note that constants like V/k cos a - k in the above will often appear in this thesis, which

are evaluated as -ir/k - k cos o: to conform with our branch cut structure.
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An exact solution of OD(x, Yi) in terms of its Fourier transform integral is now available.

This integral, in the form of Eq.( 2.9), consists of a continuous plane wave spectrum. The

diffracted field thus contains all the spatial Fourier components necessary to accommodate

the step function-like discontinuity at the boundary.

2.2 Inversion of the diffracted field plane wave spectrum

Inversion to OD(x,y) is readily carried out using the following transformations:

x = -rcosO y = rsin6 q = -kcos B (2.29)

where r and 6 are polar coordinates, giving

OD (r, Cos pr J ()erkrc°8(0-8)dB (2.30)

with
sin B

P(P) sin (2.31)

The transformation q = -kcos 0 is multivalued and we will use the strip in the complex-3

plane defined by 0 < Real(3) < 7r, with the new integration contour r defined in Fig 2.4.

The transformed plane wave spectrum, P(0), will be called the angular spectrum ,161 to

distinguish it from the former.

Equation ( 2.30) is evaluated asymptotically by method of steepest descents 117, with

the saddle point at 6 = 0. The asymptotic analysis requires deformation of the r contour

into the steepest descent path (SDP) contour r(o). Any singularities which are crossed

while deforming the contour, such as the pole in the angular spectrum at 0 = 7r - a, must

be accounted for in the evaluation. The residue of the pole at 8 = ?r - a comprises a

necessary geometric field, but in the vicinity of this pole the asymptotic method breaks

down because the SDP contour crosses the real-B axis near 6 = ir - a and the integrand is

no longer slowly varying. One way to get around this problem is to partition the angular

spectrum [161,

P(0) = P1(0) + P2 (53) (2.32)

such that P1 (0) is analytic for 0 < Real(0) < 7r and P 2 (3) retains the pole at 3 = 7r -- c.
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0

r r (o)

Figure 2.4: Inversion contour is r, and deformed SDP contour r(o). The pole at 6 =7 - a
is captured for 0 < ,r - a

The diffracted potential now takes the form

OD Cosa (PI + P2)eikrcOA(-O - DI + OD2 (2.33)

where
sin P sin -co. cos
2 cos ; sin cos L cos A2

and

P2 (2.35)
2 sin cos41,

With the partitioning, Eq.( 2.33) can be evaluated asymptotically for the first term (PI(e))

using the SDP contour ro which passes through the saddle point on the real-# axis (Fig. 2.4).

The result for kr > I is,

(1+i) -k "  1
cDI(rO) = P(C)-s + o(--). (2.36)

vf2-;r 7k~r (kr) -2

This is an asymptotic series with the dominant behavior being a cylindrical waveform

emanating from the origin (point of discontinuity) and a far field radiation pattern defined

by P1(0).
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Many integrals of the type

I(r,) f Q(/3)ekrco8(- 6 )d/3 (2.37)I~rO)

where Q(,3) is analytic for 0 < Real(3) < 7r, will be used in this thesis. An asymptotic

evaluation of such integrals valid for kr >> 1 is

I(r, 0) r(1- Q+kr - ( (2.38)
Vk-r (kr) '

This will be called the SDP evaluation, and a derivation of this expression is presented in

Appendix A.

The other portion of the diffracted field remains in integral form

OD22(r, l - Cosa 1 eikrcoo(0-_8)d/3. (2.39)vr'7 f 2 sin -a cos 8+__'
2 2

We could proceed with a SDP evaluation provided the saddle point is not too close to 7r - a,

and in the process of deforming the contour we would capture the pole at /3 = 7r- a provided

0 < ?r - ca (Fig. 2.5). The pole capture is 'clockwise' or -27ri and the resulting geometric

field is

g-o2(r, e-) = (2.40)

which, together with the hard surface reflected field, satisfies the Dirichlet boundary con-

dition for x < 0. Assuming the residue eD2(r,O) has been accounted for, the remaining

integral is recast into the form known as the Fresnel integral which accounts for the behav-

ior of Eq.( 2.39) near the vicinity of the pole. This is done in two steps [4]. Using/3' /9-

with r' the corresponding contour in the /3P' plane, we have
i ikrcos~8'

OD2(r, 6) = fr, cos( ') d/3'. (2.41)

The ' contour is now deformed into a new one that passes through Real(/3') - 0, which

results in

eD2(r,O)- cos( * / cos2 eikr cose'd#3, (2.42)7r Jr(o), cos/3' + cos(0 + c)

and upon using cos/3' = 1 + ir 2 , Eq.( 2.41) becomes

eD2(r,O) -- be fo e- J *2 dr (2.43)
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-line dividing

specular ref lection

pole captured for 0 < 7r - a

Figure 2.5: The xy field plane expressed in terms of r, 0. The pole corresponding to a

geometric field is captured for e < r - a, for 0 > r - a the boundary condition is already
satisfied by 01 + OR and no pole is captured in this region.

where

b = V2cos(-+ ). (2.44)

The integral in Eq. ( 2.43) is of the Fresnel type which we will evaluate exactly using

an IMSL subroutine [1], with the entire expression in Eq.( 2.43) henceforth defined as the

function 7(r,O; a).

2.3 Properties of the Fresnel integral

It will be useful to record here the asymptotic form of 7(r,0; a) =1A(r,0; a) by applying

the SDP evaluation formula Eq.( 2.38) to Eq.( 2.39) which gives,

A+i ei t ,  I
A(r, 0;CE) - +O( (2.45)

12-7b -'-k (kr) 2

The asymptotic form of "(r,0; a) is not valid in the vicinity of 0 = X - a, for the same

reason the asymptotic analysis failed earlier. Specifically, one way to evaluate the integral
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in Eq.( 2.43) for kr >> 1 is to expand the part of the integrand equal to (r 2 + ib2 )-
l into

a Taylor series and integrate term by term. The Taylor series has a radius of convergence

equal to 0(b); when b vanishes near 0 = ?r - a the analysis leading to YA(r, 0; or) is not valid

no matter how large kr is. A more complete asymptotic analysis using integration by parts

shows that the validity of the asymptotic form of 3r(r,#; a) depends on the value of kr [38],

and with
0 + a >x/kr cos(-2)l - 3.55 (2.46)

the asymptotic form FA(r, 0; or) is valid.

The area where 7A(r, 0; ac) is not valid is the transition region between the two geomet-

rically reflected fields. The behavior of the diffracted field here is complex and requires the

exact Fresnel integral for a complete description of the field across this region. We can get

an idea of the diffracted field behavior within the transition region by examining 7 (r, 0, a)

immediately on either side of the line dividing specular reflection. Putting Eq. ( 2.43) into

a form suitable for evaluation by IMSL gives

7(r,#;a) = e kTW(arg) 0 < 7r - a

F(r,0;a) = -eikW(arg) 0 > ?r - u (2.47)

In the above, W is the complex error function (C(z) + iS(z) as defined in Abramowitz and

Stegun [3], p. 301); this is the function evaluted by IMSL with arg = e 4v0- b . In the

limit of 0 approaching ir - c, then b -* 0 and one can observe that W -* 1, giving

lim 7 (r, 7r - a ± F) = TekT. (2.48)
6-0

Thus, within the transition region the diffracted field approaches the same order of mag-

nitude (i.e., plane wave behavior) as the incident and reflected fields. Having the same

magnitude, the diffracted field is able to interfere with the incident and reflected fields and

provide a means to smooth the transition between the two different specularly reflected

fields. Outside the transition region, or the shadow region, the diffracted field decays

with characteristic cylindrical wave dependence as exhibited by the asymptotic form of

7A(r,0, Ct). We return to the concepts of transition and shadow regions in Chapter 3, in

the discussion of conservation of power.
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Also recorded here for future use is the radial derivative y of I'(r, 0, a). We start by

taking the radial derivative of Eq.( 2.39) which is

-kf cos(P - O)eiA,:,_c()df.
2x Jr cos(,e)

Then, duplicating the steps which lead to the Fresnel integral, we have for this case
/_ -krv 2

a.7 (r, 0;a) = ik.7(r,0; a) - k b e Z(,- ) f 2 dr. (2.49)49r r _ . r2  - Wb

We now focus on the integral in the above equation

I = 2  fr2 - d (2.50)

and r0c' e -k7 r 2 -ib 2 ) kb

I, = fTr
2 - --_- dr = e i r b2 I. (2.51)

Taking the derivative with respect to kr of I1 and integrating the result gives

dI1  _e %/ (2.52)
dkr (kr) 

2'

and thus ~oo ib
I, -- V 7-k -- e -M P d Ol. (2.53)

Upon using the substitution flb2 = A2, we have that

I = 2\/rb COA2 - d (2.54)

or
I = 2 v/ be ik rb2  / iOS

I = 2\/ __beb'2  -cdp. (2.55)
v b IA2

Equation( 2.55) is recast using integration by parts with,

J 0 e i;,2  00 *I2 lkb

-d= 2if d + -(2.56)

such that

I = 4viibe -kib 2  i
I'

2 dp + "7r" (2.57)

An altrnative expression for the Fresnel integral, equivalent to Eq.( 2.43) is [4]

7(,; )= f(1-i)eikr(I-b2) / e'~" dI. (2.58)

31



Using this expression, along with Eq.( 2.49) and Eq.( 2.57) gives us

aY~r'O;a)=ik (r'O;a)(1-2b) -kb\ (1 - i) (2.59)

This result shows how the Fresnel integral accounts for the continuous variation of ra-

dial particle velocity across the transition region. Far away from the transition region

7(r,0; a) n A (r,0; a) and therefore

a 7(r,; c) ik(1 + ,) ek,
ar (2.60)

which is the usual cylindrical wave dependence for radial particle velocity. Well into the

transition region b approaches zero and 7(r,O; ct) approaches the plane wave behavior of

Eq.( 2.48) and therefore
aT(r,0; a) kr - ±ikek .  (2.61)

2.4 The diffracted field and check of the boundary condi-

tions

Contours of equal amplitude level for ODI and OD2, are shown in Figs. 2.6 and 2.7. The

incident field is a monochromatic plane wave of 50 Hz and a = 150, with the dB levels

referenced to a unit amplitude incident wave field. The geometric plane wave field arising

from a residue contribution from 9D(r, 0) is removed and shown here are only the SDP and

Fresnel integral contributions to OD(r,O). The same fields are shown in Figs. 2.8 and 2.9

for c = 135', which is equivalent to the plane wave incident from the other side.

The boundary condition to be satisfied by 4D(X,0), minus its residue contribution, is

now the same as Eqs.( 2.1) and ( 2.2). By themselves, the component fields CD1 and €D2 do

not satisfy these mixed boundary conditions, but when summed coherently as in Figs. 2.10

and 2.11 the mixed boundary conditions are satisfied. Note that a good approximation to

the total diffracted fields in Figs. 2.10 and 2.11, valid outside the transition zone, is available

by SDP evaluation of Eq.( 2.30) directly without the partitioning into the component fields.

The details of the transition region are lost, but outside the transition region the diffracted
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Figure 2.6: Contours of equal amplitude of ODl(r,O) for a = 150. The boundary discon-
tinuity at the origin is marked by the triangle, with the free surface boundary on the left
side and perfectly rigid surface on the right side. The distance from the origin is in units

of 10. kr. The contour levels are in dB referenced to a unit amplitude incident wave field.
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Figure 2.7: Contours of equal amplitude of OD2(r,O) for a = 150. The boundary discon-
tinuity at the origin is marked by the triangle, with the free surface boundary on the left
side and perfectly rigid surface on the right side. The distance from the origin is in units
of 10. kr. The contour levels are in dB referenced to a unit amplitude incident wave field.
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Figure 2.8: Contours of equal amplitude of ODl(r,O) for a = 1350. The boundary discon-

tinuity at the origin is marked by the triangle, with the free surface boundary on the left

side and perfectly rigid surface on the right side. The distance from the origin is in units

of 10. kr. The contour levels are in dB referenced to a unit amplitude incident wave field.
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Figure 2.9: Contours of equal amplitude of OD2(r,0) for a = 135' The boundary discon-

tinuity at the origin is marked by the triangle, with the free surface boundary on the left

side and perfectly rigid surface on the right side. The distance from the origin is in units

of 10. kr. The contour levels are in dB referenced to a unit amplitude incident wave field.
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Figure 2.11: Contours of equal amplitude of OD(r,O) for a 1350. The boundary discon-
tinuity at the origin is marked by the triangle, with the free surface boundary on the left
side and perfectly rigid surface on the right side. The distance from the origin is in units
of 10. kr. The contour levels are in dB referenced to , unit amplitude incident wave field.
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field behaves like
eikrbD~,0) P(0 r . (2.62)

which is equivalent to the far field of a line source located at the point of discontinuity in

the boundary. The far field radiation pattern here is equal to P(O), which is Eq.( 2.31)

evaluated at the saddle point.

Returning to the analysis using the partitioned fields, for z < 0, y = 0 the residue of

4OD2 provides the necessary geometric or plane wave field to combine with 01 and OR such

that the boundary condition Eq.( 2.1) is satisfied by the plane waves. We will refer to plane

wave fields as 0(1) fields because of their non-decaying radial dependence, and the mixed

boundary conditions must always be satisfied separately by the 0(1) fields. The cylindrical

spreading fields of ODI and OD2 are 0() with c = 1/Vkp. (We note that O'D2 is a cylindrical

spreading field as described by FA, except within the transition region.) These fields are in

exact anti-phase to 0() along the x < 0 boundary, with the exception of the vicinity of

origin where the asymptotic representations are not valid, and thus satisfy the boundary

condition to 0(c). This is easily seen by evaluating Eq.( 2.36) and Eq.( 2.45) at 9 = 0.

The asymptotic form of OD2 = TA is entirely adequate here because we are well out of the

transition region.

Rather than examining higher order terms of the asymptotic series, a better way to

ascertain the exactness of the solution is to examine the original integral representation

OD(X,O) = -2iv'/k cos - k - e- - dq (2.63)

For x < 0 we capture the necessary pole contribution but this is the only contribution

to the integral as can be seen by extending the contour into a semi-circle in the lower half-

plane and applying Jordan's lemma [361. Checking the boundary condition for x > 0 in the

same nanner we have
a 0 vr--+- e q z dqTO D ( X ,' 0 ) = 2iv/k cosc - k e (--- 2 - (2.64)

Y f-0. ~(q -k cosce a 27

Here there is only a branch line beginning at q = -k and extending into the lower half-

plane. For z > 0 we evaluate the integral by extending the contour into a semi-circle in the

upper half-plane and apply Jordan's lemma. The pole at q = kcosce will not be captured
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impi

branch point at q = k

Figure 2.12: Branch line integral for evaluating 4'D(x,O) and x > 0.

because it lies just below the real-q axis. The integral is zero and the boundary condition

[Eq.( 2.2)] is satisfied exactly. In the remainder of this thesis it will be sufficient to report

the inverted field solution to O(E), which is all that is required to extract far field diffraction

intensity information. This solution satisfies the mixed boundary condition to O(c) with an

error of O(c).

It is interesting to note the behavior of OD(z,0) for x > 0. This is best done by working

directly with the integral representation and evaluating the necessary branch line integral

due to the V/---T factor in G(q) (Fig. 2.12).

The two branch line integrals are

II = eikzI dp (2.65)

(kcosa - k - pet)Vpe'.

and
I = i k Z- i L 

2 --1o0 e-,9Z
12 = C 2e dp (2.66)

(kcos-k-p-) pea'- - -

with q = 2 + k on I, and q = pC- 
2 + k on 12 and p the integration variable. Expanding
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the denominators of the integrands in a Taylor series about small p and integrating gives

OD(X,o) = -(I + i) /-2 1 - 0 ) (2.67)
Ylr N'1-Cos Ck=. + ( k .)

as the net lowest order result. For now let us simply note that OD is characterized by

0(c) behavior along the perfectly rigid or infinite impedance part of the two-part planar

surface. In the next chapter we contrast this behavior with the behavior of OD along a

finite impedance surface.

2.5 Summary

In this chapter the exact solution to a canonical diffraction problem was determined using

the Wiener-Hopf method. The solution was expressed in terms of a continuous plane wave

spectrum G(q), or the equivalent angular spectrum P(,3). The spectrum corresponds to the

diffracted field which results from a monochromatic plane wave incident upon two coupled

half-planes, one surface characterized by the Dirichlet boundary condition the other surface

characterized by the Neumann boundary condition.

The spectrum was partitioned into a term which is free of singularities, P(/3), and

P2 (/3) which retained the pole at 3 = 7r - a that corresponds to the angle of specular

reflection. This gave way to two components of the diffracted field ODI and OD2. The first

was expressed as an asymptotic series valid for kr >> 1, while the second was expressed by

the Fresnel integral defined functionally as 7(r,0;i) and evaluated exactly. Fundamental

properties of 7(r,O; a) and its asymptotic form YA(r,6;ci) were derived, including the radial

derivative 8 which will be used later in diffraction field intensity calculations.

The canonical nroblem is a highly idealized rendition of what happens when a plane

wave is incident upon a water-to-ice canopy surface. Nevertheless, some essential features

of the diffraction process are reproduced in the solution. These include a diffracted field

containing a residue contribution which restores field continuity along the line dividing the

regions of specular reflection, and a cylindrical wave contribution which maintains the mixed

boundary conditions. This solution will serve as a guideline to the more realistic boundary

conditions to be addressed in the next two chapters.
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Chapter 3

Diffraction problem with locally

reacting boundary condition

This chapter presents the solution to the problem of a monochromatic plane acoustic wave

incident upon a surface in which the boundary surface impedance changes abruptly from

a free surface, or zero impedance, to a locally reacting finite impedance. The difference

between this problem and the one presented in Chapter 2, is that here a finite impedance

has replaced the infinite impedance or Neumann boundary condition. We will show sub-

sequently that this problem is a useful model for the free surface-to-ice surface boundary

change, and ultimately the ice lead diffraction process.

3.1 The locally reacting boundary condition for ice at low

frequency

A locally reacting surface is one for which the input (surface) impedance Zj, defined as the

ratio of acoustic pressure to normal particle velocity evaluated at the surface, is independent

of horizontal wavenumber. Let us assume for the moment that the boundary surface consists

of a single thin (with respect to any wavelength scale) layer or plate, and this surface is a

locally reacting one. From Newton's second law

m -p-= P  (3.1)
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where m is the mass per unit area of the plate, V is the velocity of a point on the surface

of the plate into the medium, in response to P the acoustic pressure on the plate-medium

boundary [62 Taking the ratio of pressure to normal velocity, assuming e"wt time depen-

dence, the input impedance of the plate is

A" = -. wm. (3.2)

This is a locally reacting, finite impedance; it is locally reacting because there is no depen-

dence upon horizontal wavenumber and finite because it no longer ha. the perfectly rigid

property. Here, the plate impedance is due only its mass. Real plate material of course can

be elastic, and this formulation does not take into account the elasticity of the plate.

It is instructive to examine the input impedance of a floating ice sheet or plate from this

point of view. If the plate material consists of a single homogeneous layer of total thickness

H, the full set of equations from linear elasticity theory is no longer necessary to derive

the input impedance. Here, a simpler formulation, often referred to as the Rayleigh-Lamb

equations [321, is sufficient to determine the plate input impedance. With kH values below

cut-off for higher order mode propagation in the plate, only the two fundamental modes

from the Rayleigh-Lamb equations are necessary for a complete description of the plate

input impedance. These are known as the longitudinal mode (symmetric Lamb mode) and

the flexural mode (anti-symmetric Lamb mode). The wave impedances of the longitudinal

mode Z_ and the flexural mode Z~ add in parallel to form the total input impedance for

the plate. These impedances are given by [49]
-i____2) H H

Z_( -S [(_t2 + q ) oh-jH- 4ytq2coth -y H (3.3)zq)= , t 2 283

and
-iwp2 H H

Z~(q) - . [(-I' + q2)2 tanh - 1 -y - 4-11,ytq tanh It]. (3.4)

Here, g i- k? and yj = Vq - k,, are the shear and compressional vertical wave

numbers in the ice, with kt - and k, = '. where ct is the shear wave speed and cl is the

compressional wave speed in the ice and p1 is the ice density. The ambient water sound

speed and density will be referred to as c and p, respectively. Typical values of sea ice

parameters which will be used in this thesis are:
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c = 3500 m/s

* ct - 1800 rn,/s

* P, = 920 kg/m 3

We will use the nominal values of 1450 m/s and 1000 kg/m 3 for the ambient water sound

speed and density, and ignore the small energy dissipation within the ice which would be

represented by a small negative imaginary part in the ice wave speeds.

Examining Eqs.( 3.3) and (3.4) for small values of kH (e.g., kH < 1) shows that ]Z_ I >>

IZ~1, and since the two wave impedances add in parallel we have Zin ;Z Z. The flexural

wave impedance can be expanded in terms of -ttH and IH when the arguments of the

hyperbolic functions are small and these functions are replaced by their Taylor expansions,

with the result to leading order [491

Z = -iwpH + O(YtE,Ht H) 3  (3.5)

which gives us our original mass loading formulation with m = piH. With this approxima-

tion, elastic resistance to deformation is neglected and inertial effects, or mass loading, is

dominant. The neglect of Z_ in favor of Z~ in the parallel additions is consistent with our

use in Chapter 4 of the Euler-Bernoulli or thin plate equation [58] to account for the elastic

effects of ice.

This marks a convenient point to skip ahead and briefly discuss the thin plate equation

in the context of the input impedance of ice, and the locally reacting boundary condition.

Specifically, let us reach the same conclusion of Eq.( 3.5) more directly via the thin plate

equation. For small values of kH it is customary to work with the thin plate equation rather

than the Rayleigh-Lamb formulation. (Various guidelines exist for determining when the

thin plate equation can be used e.g., [43,27]. These all more or less satisfy the criterion

kH < 1, which we discuss in more detail in Chapter 4.) Then, the vertical plate deflection

U = U(x) of a thin plate is governed by

B -4 U - pi w2 U P(±; t) (3.6)

which includes the usual two-dimensional assumption that 0 = 0 and harmonic time

dependence of e" . The first term on the left characterizes elastic effects, or the spring-
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like resistance of the plate to bending, and the second term characterizes inertial effects.

The forcing term, P(z; t), in our case will be the pressure due to a plane acoustic wave

incident upon the ice, or equivalently, it is the loading of the ambient fluid medium.

The bending stiffness B is defined

EHs  ()
12 (1 - a 2)

where E is Young's modulus and a is Poisson's ratio, with

E = 2p(1 + a). (3.8)

For an isotropic elastic medium [70] Poisson's ratio and the Lam6 constants A, p are related

as follows

.5A < .5 ct= F P cl =I.9:

For comparative purposes a L .32 and E - 8. 109 Pascals are typical values for sea ice.

When its elastic properties are described by the thin plate equation, the input impedance

of ice can be expressed as (43]

Z, = -iwpjH(1 - (3.10)

where q is the variable for horizontal wavenumber as used in Chapter 2. The wavenumber

in vacuo, kf, is a solution to the characteristic equation corresponding to Eq.( 3.6) with the

forcing term set to zero,

B 4 
(3.11)

We will find for meters-thick ice and frequencies in the range of 50 Hz or less, that

pHw 2 > q4B is always satisfied by homogeneous values of q (q/k < 1). Thus a lead-

ing order approximation for Zin equivalent to the one in Eq.( 3.5) is available simply by

inspection of Eq.( 3.10).

We have argued here the merits of a locally reacting approximation for the input

impedance of an ice plate. The approximation being, at low kH values and in the ho-

mogeneous region of the horizontal wave number spectrum, the ice surface impedance is

purely reactive and characterized by mass loading.
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The locally reacting approximation allows us to replace continuity of pressure and par-

ticle velocity at an interface with a single impedance boundary condition [58]

yT - f . PO (3.12)

ay A.,

evaluated on the boundary, and where Zjn is a constant. To simplify notation for later use,

we define an admittance parameter

-. WP (3.13)

which becomes in the locally reacting approximation. Figure 3.1 is a plot of the

modulus of Y7(q) for sea ice with H = 1 m and a frequency of 30 Hz, computed (1) exactly

using the full elastic equations and the Thomson-Haskell matrix representation of layered

constant elastic material [72,29], and (2) using the analytical expression [Eq.( 3.4)] for Z_.

The small perturbation near .5 is due to the effect of the longitudinal wave as computed

in the exact calculation. Both functions become singular near 3.6, indicating a solution

of Zj,, = 0 or the flexural wave in vacuo. In the homogeneous region (q/k < 1) of the

wavenumber spectrum, 7(q) is nearly exactly described by the simple constant P which

confirms the locally reacting nature of the input impedance.

3.2 Solution of the finIte impedance, locally reacting diffrac-

tion problem

In this section we solve the problem of a monochromatic plane wave with grazing angle a,

incident upon a planar surface with the following mixed boundary conditions

OT(X,O) = 0 x < 0 (3.14)

a OT(X,0) = OT (z,0) > 0 (3.15)
ay

with the problem geometry and coordinate system the same as in Chapter 2. It will be

convenient later in this thesis to assume that OR is the reflected field corresponding to a

free surface but which is applied to the entire surface. Then, using this combination of 4z
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Figure 3.1: Plot of the modulus of tl(q) corresponding to sea ice with H = 1 m and a
frequency of 30 Hz. Normalized wavenumber (q/k) is used with q/k < 1 representing the
homogeneous wavenumber spectrum. The solid line is the calculation based on Z~(q); the
dashed line is exact calculation.
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and OR, the properties of OD along the boundary must necessarily be

OD(X,0)=0 <0 (3.10)

aOD (X,0) = 174D(x,0) + 2iksin aeik z 'c a  x > 0 (3.17)

in order to maintain the boundary conditions.

As in Chapter 2, we start with an integral form of -OD(X,y) [Eq.( 2.9)) representing a

continuous superposition of plane waves. Applying the semi-infinite transform definition to

what is known about D(x, 0) [Eq.( 3.16)] gives,

G(q) = G_(q) (3.18)

and applying what is known about O±P 2). [Eq.( 3.17)] gives,

q2 - k2G(q) = -L+(q) - t1G_(q) + (q-kcosa) (3.19)

Again G_ (q) and L+ (q) are unknown functions, with the last term on the right of Eq.( 3.19)

now being a '-' function since it is a result of a semi-infinite (x > 0) Fourier transfuia,

of the boundary conditions. Combining the above two equations leads to tL , Wiener-Hopf

functional equation

L+(q) = -2k sin a G (q)( - k2 + TI). (3.20)
(q- kcosa)

If 7 --+ 0 we recover an equivalent equation for an infinitely rigid surface.

To proceed, requires a multiplicative decomposition of the kernel

K q 7=K_ (q) (3.21)
K+(q)

The exact decomposition of kernels of this form has been accomplished in earlier applications

of the Wiener-Hopf method in electromagnetics 164] and acoustics [35], using Cauchy's

second integral theorem. However, the results of the exact decomposition remain in the form

of intractable contour integrals, with a resulting complexity that limits useful interpretation

of the solution. A way to get around this is to use an asymptotic decomposition for the

small parameter Y7 - 0 [22], but this only applies for a perturbation from a pefectly rigid

surface, and in our case 17 is not small. We therefore approximate this kernel by one which
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can be more easily decomposed. One motivation behind the approximation is the following:

if we can find an approximate kernel k(q) which duplicates the behavior of K(q) along the

inversion contour in the complex-q plane, then the transformed (z domain) solution will be

a good approximation to the exact solution (441. An alternative motivation arises from the

observation that the Wiener-Hopf procedure is a convolution process in the z domain. Thus,

if a substitute kernel is used which has the same area and effective width in the x domain

as does K(q) in the x domain, the result of convolution is expected to be nearly the same

[13]. In this problem we match the area plus the first three moments of K(q) which leads

to a very accurate approximate kernel k(q). Matching the moments of the transformed

K(q) effectively translates into matching the behavior of K(q) along the inversion contour

in the complex q-plane. In the homogeneous part of the wavenumber spectrum Iq < k, the

approximate kernel is essentially without error, and there is no loss in far-field accuracy.

Details of the approximation procedure and multiplicative decomposition are presented in

Appendix B.

Upon using the decomposed approximate kernel

k(q)- K(q) (3.22)

k+(q)'

Eq.( 3.20) becomes,
-2k sina

L+(q)k+(q) + (q) - G_ (q) k- (q). (3.23)

L+(qK+() =(q - k cosa)
The first, term on the right of Eq.( 3.23) is decomposed additively in the manner of Chapter

2, with

- 2k sin aR_(q) = (q - kcosa) K+(kcosa) (3.24)

and
2k sin co 2k sina (32

R+(q) = (q - k osa) K,(kcosk) - (q -k coscf) K+(q) (3.25)

and we rewrite Eq.( 3.23) as

- L+(q)k+(q) - R+(q) = G_ (q) k-_(q) - R_ (q) = E(q) (3.26)

with E(q) being an entire function. The decomposed kernel takes the form

k-_(q) = (q - iV'_T7Y) (q - kAi) (3.27)
vq - i n (q - kA2 )
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k+ (q) n (q -kA 2 )(q + i'F+i7 (q + kAj)

with the constants Ai,A 2 and parameter n defined in Appendix B.

Edge conditions are the same as those defined in Chapter 2. Thus, since jk-(q)I -- .q. 2

as jqf -- oo, the '-' side of Eq.( 3.26) behaves at most as -- jqj2 as jq -- oo. The entire

function is therefore identically zero, giving

G-.(q) = -2ksin a K+(kcosa) (3.28)
(q - kcos a)k_(q)

3.3 Inversion of the diffracted field plane wave spectrum

For the inversion G_(q) back to eL(r,0), we follow the pathway laid out in the canonical

problem. Though this plane wave spectrum is significantly different from the one determined

in the canonical problem, they do share common features. One common feature is the pole

at q = k cos a, which adds a necessary correction to the geometric fields. Another is the

'-' function - in the canonical spectrum being replaced by k- (q). Thus it will be

fruitful to rearrange the algebra here in order to use again some of the functional forms

established in the previous chapter for the canonical problem. The inversion integral now

takes the form

OD (r, O) = X fr P(/)M(/3)eikrc8(s0-6)d, (3.29)

where
-ksin a
-k K+(kcos cc), (3.30)

and
-cos 2

VIP) Cosf (3.31)M()=k_(-k cos 6)'

with the inversion contour r shown in Fig. 3.2.

Note that this contour is nearly the same one used in Chapter 2 (Fig. 2.4), but the

orientation of the pole at P = 7r - a has changed because of our use in this case of a free

surface reflected field as OR.

In Eq.( 3.29) the P(if) is the same angular spectrum determined from the canonical

problem in Chapter 2 and M(3) is a new function defined in this thesis as the material
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U 7rK

~r r (o)

Figure 3.2: Inversion contour r and deformed SDP contour r(e). The pole at 7 = - o is
captured when 0 > i - a.

function, dependent upon PP, and H. In the canonical problem there was no material in-

volved, because the surface was perfectly rigid. Introducing a finite impedance or "material"

modifies the canonical angular spectrum. By using a very accurate approximate kernel, we

have determined a useable form for M(P) which is well-behaved for 0 < Re(#) < 7. We can

also proceed with the steepest descent analysis using the angular spectrum partitioning of

Chapter 2, accordingly

4OD(r, O) = x fr (PI (8) + P2(j))M(,)e 'kcoP-,)d#. (3.32)

Carrying out the inversion in this manner now gives three fields which are added coherently

to comprise OD(P,O). The first field results from a SDP evaluation and is

'ikr

OD,(r,O) = (1 -i)v/7xPi(O)M(O)- + o(( ) (3.33)

with a remaining part

I(r,0) = xfr P2(f))M(#)ekr cO(,6-8)d#. (3.34)
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We treat the integral in Eq.( 3.34) exactly the same way as in Eq. ( 2.41). The only

difference here is that this integral yields a residue field contribution for the angular sector

0 > 7r - a, rather than for the sector 0 < 7r - oa as before. The resulting geometric field is

geo(r,O) = -27riX M(i -)22 e-ico+) (3.35)

Examining the complex amplitude for the above plane wave more closely we see that
M(7 - )+ (k cosa) -2ik sina

sin k _(kcosa) k(kcosa)(

We can leave the amplitude in this form, or use the fact that the difference between K(q)

and k(q) in the k.omogeneous wavenumber region is at most a few percent; thus substituting

K(k cos o) for k(k cos a) we have

M(7r - a) -2ik sin a
sine = K(kcosa) = 1+ R(a) (3.37)

where R(a) is the plane wave reflection coefficient for the locally reacting surface evaluated

at grazing angle a. The equality in Eq. ( 3.37) will be used in the remainder of this thesis.

The resu'.ing geometric field has complex amplitude 1 + R(a), where the first term cancels

the free surface reflection which exists along the entire boundary but which applies only for

x < 0. The second term combined with the incident field satisfies the boundary condition

for z > 0.

Continuing with Lhe integral in Eq.( 3.34) we rewrite P2 (/3)M(P) as

P2 (13)M(B) = P 2 (#)M(7r - a) + P2 (/3)[M(/3) - M(7r - a)]. (3.38)

Using this expression in Eq.( 3.34) the result from the first term is the Fresno! integral

modified by a constant. The integral of the second bracketed term, is now well-behaved for

0 < Real(#) < 7r, since the pole at P = r - a is cancelled, and is evaluated using the SDP

contour. The complete inversion of Eq.( 3.34) is then

OD2(r,O) = 1 + R(a) rr,O; a) (3.39)

2

plus
OD 3 (r, 0) (1 - )V'-X P2(0) M (0) - M (r - a)]1 + ( 3.40)

~kD3(,O) X (kr)~
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As in the canonical problem, the diffracted field is expressed in terms of an asymptotic

series, and an exact expression for the Fresnel integral field. In this case the Fresnel integral

field is modified by a complex amplitude factor ) which is one half the difference of the2

two reflection coeffcients involved. In the canonical problem the two reflection coefficients

are -1 (free surface) and +I (perfectly rigid surface); their difference is 2 and the amplitude

of 7(r, 0;c) is unity. The simple constant modifying 7(r,0; a) confirms the idea discussed

in Chapter 2, that the Fresnel integral field exists to smooth the transition between the two

geometrically reflected fields. Note that, except for the complex amplitude factor, T(r, 0; c)

is exactly the same form for both the canonical and finite ir edance problem. However; the

introduction of finite impedance has given rise to a second cylindrically spreading component

field kD3; this field together with the ODI component field adds coherently with 4 D2 such

that the boundary conditions are maintained.

3.4 The diffracted field and check of the boundary condi-

tions

Contours of equal amplitude level for ODI, OD2 and 4 'D3 are shown in Figs. 3.3, 3.4, and 3.5;

the coherent sum of O z and O'D3 is shown in Fig. 3.6. The incident field is a monochromatic

plane wave of 50 Hz with c = 15', with dB levels referenced to a unit amplitude incident

wave field. The material can be considered that of ice in the locally reacting approximation,

with P, = .92 and H = 2 m. The coherent sum of component fields which gives the total

diffracted field OD(r,O) is shown in Fig. ( 3.7). The boundary condition [Eq.( 3.14) is

satisfied to 0(1) by the plane wave incident and free surface reflected fields, with no residues

in the integral representation of OD(X, 0) captured for z < 0. The two fields resulting from

the SDP evaluation, OD1 and 4Ds, plus the asymptotic form of OD2, are in exact anti-phase

to 0(c), c = 1/v/'p, along this boundary and thus Eq.( 3.14) is satisfied to 0(c).

For x > 0, y = 0 we need to take inventory of the geometric fields: the original incident

and free surface reflected fields; a field resulting from capture of a pole for x > 0, y = 0 in
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PHI D1

Figure 3.3: Contours of equal amplitude level for 4OD1(r,O) with a - 150. The boundary
discontinuity at the origin is marked by the triangle, with the free surface boundary on the
left side and finite impedance surface on the right side. The distance from the origin is in
units of 10. kr. The contour levels are in dB referenced to a unit amplitude incident wave
field.
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50.0 40.0 30.0 20.0 10.0 10.0 20.0 30.0 40.0 50.0
PHI D2

Figure 3.4: Contours of equal amplitude level for OD2(r,6) with a = 150. The boundary
discontinuity at the origin is marked by the triangle, with the free surface boundary on the
left side and finite impedance surface on the right side. The distance from the origin is in
units of 10. kr. The contour levels are in dB referenced to a unit amplitude incident wave
field.
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PHI D3

Figure 3.5: Contours of equal amplitude level for -D3(r,O) with c 150 . The boundary
discontinuity at the origin is marked by the triangle, with the free surface boundary on the
left side and finite impedance surface on the right side. The distance from the origin is in
units of 10. kr. The contour levels are in dB referenced to a unit amplitude incident wave
field.
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PHI D1+D3

Figure 3.6: Contours of equal amplitude level for the coherent sum of OD1 (r, 0) and OD3(r, 0)
with a = 150. The boundary discontinuity at the origin is marked by the triangle, with the
free surface boundary on the left side and finite impedance surface on the right side. The
distance from the origin is in units of 10 • kr. The contour levels are in dB referenced to a
unit amplitude incident wave field.
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PHI D

Figure 3.7: Contours of equal amplitude level for OD(r,O) with a - 150. The boundary
discontinuity at the origin is marked by the triangle, with the free surface boundary on the
left side and finite impedance surface on the right side. The distance from the origin is in
units of 10. kr. The contour levels are in dB referenced to a unit amplitude incident wave
field.
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the integral representation of i?4D(z,O) which is

17OD(X,O) = tI(l + R)ekzcos* (3.41)

and the analogous residue field in the integral representation of "RP!O2 which is

a4D(z,O) sin c(I + R)ek " o (3.42)
ay

Here R is assumed to be a function of ot to simplify notation. Since the incident and

free surface reflected fields cancel, the effective boundary condition for OD(x,O),x > 0 is

Eq.( 3.17), which is satisfied by the geometric fields in Eqs.( 3.41) and (3.42) upon using

the identity

iksin a(R- 1) = o(R + 1). (3.43)

Thus, the geometric fields which arise from the residue contributions of OD balance sepa-

rately.

Having satisfied Eq.( 3.17) the equivalent boundary condition to be satisfied by the SDP

fields is
4(x,O) _ V17D(X,O) z > 0. (3.44)

For x > 0, the coherent sum of 40Dl(Z,0) and bDS(X,0) gives

(l+R)(1+i) e'k  1
'rir sin, (Ax i

which is in exact anti-phase with OD2 (X, 0) as described by

(1+ R) Y (r,2r;o).

2

Therefore the 0(c) behavior of OkD vanishes along the z > 0 boundary with the leading

order behavior being 0(c 3 ). Recovery of higher order terms in OD(X,O) is possible but

not necessary because to strike an asymptotic balance between both sides of Eq.( 3.44)

merely requires that also vanish to this same order. The normal derivative of the

cylindrically radiating diffracted field is available from the integral representation

8q D(ZO) f = 7f k2G(q)eqzdq (3.45)

59



and with z > 0 the integral contour will be a semi-circle in the upper half-plane with the

net result coming from the branch line integration around the branch point of V . The

leading order behavior of this integral using the same contour as in Fig. 2.12 is 0(1/(kX) )

and we thus satisfy Eq.( 3.44) to 0(c) with an error of 0(s).

We note that the boundary condition of Eq.( 3.44) is exactly that which applies to the

Karp-Karal lemma 118] from the theory of radiation from surface wave antennas. The Karp-

Karal lemma states that the 0(c) behavior of a radiating or space wave field must vanish over

a finite impedance surface. (One may view this as relating to "Lloyds mirror" effect [6]. We

refer to the Karp-Karal lemma because it specifically addresses our impedance boundary

condition.) In our diffraction problem the far field of O'D (except within the transition

region) is equivalent to a radiating cylindrical wave, and we found that OD vanished along

the finite impedance boundary at the 0(c) level in agreement with the Karp-Karal lemma.

This is in contrast with the results of Chapter 2, where the leading order behavior of OD was

found to be 0(c) along the infinite impedance boundary. The main point of the Karp-Karal

lemma as applied to this diffraction problem is that, for a finite impedance boundary the

diffracted intensity decays as 1/(kx) 3 along the boundary, while for an infinite impedance

boundary the diffracted intensity decays as 1/(kx)2 . This fact will be used later in Chapter

5 when we apply these results to boundaries of some finite characteristic length.

3.5 Analysis of errors originating from use of the approxi-

mate kernel

We have used an approximate kernel k(q) which sufficiently duplicated the behavior of K(q)

and, most importantly, could be decomposed into k_(q) and k+(q). The decomposed

factor K_(q) became part of the diffracted field plane wave spectrum. But k_(q) also

has three singularities which are due to the approximating procedure. These spurious

singularities must be accounted for if they are crossed when deforming the contour in the

SDP analysis, and we need to show that their contributions are negligible. Specifically, the

factors (q-iV'Tlt) and (q- kA1 ) (as defined in Ar.,endix B) yield residue contributions

for x > 0. Since iv/,-,2 is imaginary and kA, is complex with positive imaginary part.
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the residue fields are exponentially damped in range z. These have been evaluated and, at

their maximum value near the origin, are approximately 50 dB less than the other terms in

OD .

The factor VrT with n a positive integer (as defined in Appendix B) introduces

a spurious branch line integral around the branch point q = ikn. This can be evaluated

asymptotically with the behavior of the leading order term being O(e-"kn/(kx)3). Thus,

even if had reported terms of 0(1/(kx)*) in 4'D(Z,0), Eq.( 3.44) would not balance exactly

to this order. Here lies the distinction between the use of the approximate kernel in this

solution, and the exact solution of the canonical problem. In the canonical problem solution,

satisfying the boundary condition to 0(c) was only a result of the mathematical difficulties

in inverting the integral; otherwise the solution is exact. With this solution, higher order

terms are in error because of the approximate kernel.

But we can say with confidence that the solution dependent upon the approximate

kernel satisfies the field equation exactly, as seen by the original integral representation

of OD(z, Y) in Eq.( 2.9), and satisfies the boundary conditions along the planar boundary

y = 0 to 0(c), as well as the radiation condition. The field equation is the reduced wave

equation or Helmholtz equation. This is an elliptic type partial differential equation (PDE)

[361. One property of an elliptic PDE is that a field solution is a unique one if it satisfies the

appropriate specified boundary conditions [37]; furthermore, if the boundary conditions are

satsified to 0(c) the field solution is correct to 0(c) [63]. That is, for an elliptic PDE, higher

order errors in satisfying the boundary condition will not propagate into the field solution.

By satisfying the boundary conditions to a sufficient degree of accuracy, we justify use of

the approximate kernel. A field solution correct to O(e) is discussed in the next section in

the context of energy conservation.

3.6 Power balance of incident, reflected and diffracted fields

In this section we demonstrate that the total field, being the coherent sum of incident,

reflected and diffracted fields, satisfies a power balance governed by the homogeneous

Helmholtz equation. Because the fields are in steady state with harmonic time depen-
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Figure 3.8: Control surface S for determining power balance composed of sections Si,S 2

and S 3 .

dence, the energy flowing through the boundaries of an arbitrary closed surface per unit

time must be balanced by the total power supplied by sources within the closed surface.

Since there are no sound sources in this problem, we must necessarily have

J(I. dS -= ()rd =0. (3.46)

Here, ( ) is the intensity or Poynting vector, representing energy per unit area per unit time

[37], and S is the closed control surface in Fig. 3.8. The power is derived by integrating (1)

over the area S, and in the context of our two-dimensional geometry which is independent

of the z-coordinate, we interpret the result as power per unit length parallel to the z-axis.

In the process of computing the intensity we will encounter different orders of intensity

radial dependence such as O(co), O( 1 ) and 0(d 2 ), with c = I/vp. For example, plane

wave intensity radial dependence is O(co), and cylindrical wave intensity radial dependence

is 0(0). Because dS = rdO we have the situation where 0( 0 ) and O(d) intensity con-

tributions increase without bound when integrated from 0 to i for increasing cylindrical

radius. Thus these orders must be appropriately balanced. Furthermore the 0(c 2 ) intensity
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contribution gives an integrated value independent of cylindrical radius, and higher orders

of intensity radial dependence may be ignored.

The control surface S represents an infinite closed half cylinder (extending in and out

of the page). The cylindrical section of the surface is divided into two sectors S1 and

S 2, separated by the line dividing specular reflection; the planar section of the surface is

represented by S3 . Within each sector the reflection coefficient is R i = 1, 2; for example,

on the left planar boundary in Fig. 3.8 R1 equals -1 corresponding to the free surface, and

on the right planar boundary R2 equals the reflection coefficient corresponding to a locally

reacting surface evaluated at grazing angle a. For each case IR! = 1 and OkT satisfies the

mixed boundary conditions, thus there is no energy flux through the planar surface S3 , and

the problem reduces to determining the flux through the cylindrical surface S1 + S2.

The total velocity potential field is

OT(r, 0) = ikrcos(0-a) + Rie-ikrCos(6+a) + IOD(r,O) i = 1,2 (3.47)

where the residue contribution of OD is assumed to be included in the reflected fields. The

time-averaged complex intensity vector is given by [8]

() = IP (OTVO*T - O-VOT) (3.48)

4

where the real part of (1), or active intensity [62], represents the radiating part of the

energy flux which is used for the power computation in Eq.( 3.46). The imaginary part of

(1), or reactive intensity, represents non-propagating near-field energy where the acoustic

pressure and particle velocity are out of phase, and it has no net effect on the transfer of

time-averaged energy through the closed surface S [50] The first step in the computation

gives

OTVO*T - OTVOT = [2ik(cos(O - a) + cos(e + a))] (3.49)
6

-[2 E Im(p.)J + [ODVOD* - O*DVOD]
ni=1

with

= -ikcos(6 + a)R eik 2sin 0sina
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02 = -ik cos(O - a) Ri*e- kr2 si in a

03 = VoDe ikrcos(
- a )

'04 = VODRie 
k °co( s +a)

05 = -iko* cos(O - a)e - ikrcos(6 - )

'6 = -iko* cos(O + a)P-e- krcc(e+a).

The first bracketed term represents the incident and specularly reflected fields and in-

tegrating these from 0 to 7r gives zero net power. The second bracketed term includes all of

the coupled terms of the intensity vector, of which 0 1 and 02 represent coupling between

incident and reflected fields. For these terms consider the following integral:

Ii(r) = f(,01 + i 2)rde. (3.50)

This integral can be evaluated for an arbitrarily large cylindrical radius by stationary phase

in spite of the fact that A- changes from -1 to R in a step-wise manner across the region

of integration, since this does not effect convergence properties of the integral [7]. The

stationary point (O) for both terms is 0, = 7r/2 and the result from the first term for

kr >> 1 is

ikcos(. + a)Re2kina iV

which happens to be the conjugate of the result of integrating the second term and therefore

I,(r) is a real quantity at the O(c) level. This implies that the imaginary parts as prescribed

by Eq.( 3.49) vanish at the O(E) level which means (1) is also imaginary and there is no

active intensity. The next order in the asymptotic evaluation is 0( 3 ) which we will not

concern ourselves with since it vanishes with expanding cylindrical radius.

Next we examine the coupled terms denoted by 0s and 0 5, which represent coupling

between incident and diffracted fields, by evaluating the following integral using stationary

phase:

12(r) = j(03 + 5s)rdO. (3.51)
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Both terms of the integrand are continuous functions of 0 with the stationary point at

0, = a. Because the stationary point is away from the transition sector near ir - a, the

Fresnel integral part of OD is well approximated by its cylindrically spreading asymptotic

form, and thus we can use

VOD(r, a) = ikOD(r,,). (3.52)

The result of integrating the first term is

ik A Fkk- r

which is also the conjugate of the result of integrating the second term, and like the previous

example the imaginary parts vanish to this order, which in this case is O(c2) because OD (r, a)

is already of 0(c). This demonstrates that there is no coupling between the incident and

diffracted fields.

Finally, 'b4 and b6 , which represent coupling between the reflected and diffracted fields,

must be shown to balance in the appropriate manner. But in this case the surface integral

has a stationary phase point at 0. = 7r - a, or the exact center of the transition region.

Stationary phase methods will not work here because the Fresnel integral part of OID is

rapidly varying in the transition region. To proceed, we divide the integration range from

0 to 7r into three regions including the transition region

13(r) = + f + f(b 4 + 6b)rdO (3.53)

where the last integral is over the transition region and A is some small angular increment.

From Eq. ( 2.46) and using the small angle approximation, we see that

A -- "3r"5(3.54)

For now, we assume A is sufficiently large enough such that the first two integrals are

outside the transition region and all component fields of OD are cylindrically spreading,

i.e., Y(r, 0; a) =7A(r, 9; a) for the OID2 component field. Because the first two integrals are

outside the transition region, there is no stationary point and the asymptotic method which

now applies is integration by parts [7]. Thus, for example, we have

-a-A )R e k(3.55)

0 r si"
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The method of integration by parts is not valid if we come too close to the line dividing

specular reflection at 0 = ?r - ca. But with sufficiently large A this is not a problem, and

the net asymptotic evaluation of the first two integrals in Eq.( 3.53) is O(c ).

We can get an idea of the intensity radial dependence and subsequent power balance

within the transition region by examining the behavior of the intensity vector on both sides

of the line dividing specular reflection at 0 = ?r - a, or the exact center of the transition

region. Precisely along this line, the cylindrically spreading component fields OD, and oD3

vanish and the diffracted field is governed entirely by the Fresnel integral functional form.

Using the properties of 7(r, 0; a) presented in Chapter 2, and setting R, = -1 and R2 = R

for clarity, we have

04 - -ik( +- )e ;i r (1+ c os (r - b ) )  (3.56)
2

¢6, i( )csOR*)e -+1 l c 6( r

on the 6 = r - a + 6 side of the line. In the limit of vanishingly small b, the integral over

this incremental area is

f (04 + V))rdO =-- -2ik(Real(R) + 1) dS (3.58)'-OF-6

where the incremental area dS = 2r6. Upon using Eq.( 3.48) the value of the coupled

intensity vector across this incremental area is

(")4,6 = -wpok(Real(R) + 1) (3.59)

We note that this intensity vectc- is real across the incremental area, and is of 0( 0 ) or of

plane wave-like radial dependence.

So far we hav- -omputed the equivalent intensity vector for the first two bracketed terms

in Eq.( 3.49), and !,-ve carried out the integration prescribed in Eq.( 3.46) for an arbitrarily

large cylindrical radius. With the exception of the transition region of angular width 2A,
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the results derived asymptotically for kr >> 1 showed that the orders of intensity radial

dependence to be appropriately balanced when integrated. In other words, we found no left

over 0(d° ) or O(d1 ) intensity radial dependence. Within the transition region the power

remains unbalanced, however, with the intensity radial dependence being O(C° ) in the exact

center of this region.

We have yet to examine the intensity vector due to the purely diffracted field described

by the last bracketed term in Eq.( 3.49). Inside the transition region the diffracted field

will also be rapidly varying and so will be examined in the same manner. Specifically,

ODVO* - O*DVD ~ -ik(Real(R) + 1) (3.60)

on either side of the line dividing specular reflection. Thus in the limit of vanishingly small

5 the total diffracted power transferred across this same incremental area is

iwpo Dlr-+6 (DV4* - *VOD)rdO = .5 wpok(Real(R) + 1) dS (3.61)

with the diffracted intensity vector across this incremental area being

(1 )D = .5wpok(Real(R) + 1). (3.62)

The intensity vector due to the diffracted field is of the same order as that found for the

combination of coupled fields tP4 and ¢6 [Eq.( 3.59)], but is half the value and points in

the opposite direction. The power is not balanced exactly since we have only looked at one

incremental element of the rapidly varying transition region. Entering the next incremental

element will give another relation between the coupled and diffracted intensity vectors; a

relation which is not simple because the diffracted field behavior is now tied to the complex

error function as discussed in Chapter 2. Nevertheless, if we plot the intensity vector

corresponding to the purely diffracted field and the intensity vector corresponding to the

combination of coupled fields 0 4 and 06 (Fig. 3.9), we observe that the areas under the

two curves cancel (this has been confirmed by numerical integration with the two integrals

cancelling within a fraction of a percent). Figure 3.9 also confirms our arguments leading

to Eqs.( 3.59) and ( 3.62). Since the two integrals represented by the figure cancel, the

power transferred within the transition region is also balanced.
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Figure 3.9: Behavior of coupled intensity vector (146(dashed line) and diffracted intensity
vector (MD (solid line) within the transition region with the intensity values normalized
for clarity. The example is from the canonical diffraction problem where R, = -1, R 2 =I

and a 350, with kr =100,000 which sets the transition range angular width to be ;: 10,
centered at the specular field angle 6 = 1350.
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Now the entire 0 to 7r integration range over the cylindrical surface has been balanced

in terms of integrated intensity. But this balance was achieved without regard to the

contribution of the diffracted field outside the transition region. Outside the transition

region the diffracted field is cylindrically spreading and the net integrated intensity or

power will be independent of cylindrical radius. Let us call the power contribution from

this integration [iD. But the original conservation law as expressed by Eq.( 3.46) must still

hold. Therefore we attribute the value of flD to an equivalent reduction in the specularly

reflected radiated power rlR, such that the overall power balance becomes

Ii' = fR + iD (3.63)

where Uj is the incident power and HIR is the now reduced specularly reflected power.

There remains one final practical matter regarding the computation of nlD. Since the

power computation is outside the transition region we define formally that

lD = + f (ID)rdO (3.64)
JO "-a+A

where (fD) is the diffracted intensity computed from O'D, and we employ the asymptotic

evaluation 7(r, 0; a) for the 4D2 component field, which is valid outside the transition region.

But the transition region angular width 2A decreases with 1/vl ', and in this sense our

intensity integration does depend on cylindrical radius. This kr-dependence can be thought

of as due to power contributions from coupled terms which have not decayed sufficiently for

their influence on lD to be negligible. Recall though, that we have already demonstrated

analytically, in the asymptotic kr -- oo limit, that the coupled power contributions will

either vanish, or be exactly balanced as is the case within the transition region, and thus

do not contribute to the net power.

The progressive decay of the coupled terms is shown in the following four plots which

give the far field amplitude level of IOD(r,O)12. The solid line uses the exact evaluation

of 7(r,O;a) for the OD2(r,O) component field, and the dashed line uses the asymptotic

evaluation YA(r, 0; a) [Eq.( 2.45)] which has cylindrical spreading. Each plot has a 40 dB

range, with the 0 dB point referenced to the maximum value of the diffracted field which is

2R(,)+1 and always occurs along the line dividing specular reflection. Two examples of the
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locally reacting ice boundary condition are given with H = 2 m , P2 = .92 and frequency

of 50 Hz. In the first (Fig. 3.10) a = 150 giving

1+R
20log 1 -I = -19.71 (3.65)

2

in dB which is considered the 0 db point; in the second (Fig. 3.11) a = 450 and therefore

-12 dB is considered the 0 dB point. The third and fourth examples (Figs. 3.12 and 3.13)

are from the canonical problem; here the maximum value will always be 0 dB because

R is unity for all a. For increasing kr the asymptotic evaluation merges with the exact

evaluation. For example, at kr = 10,000 the two evaluations are the same except within

the approximately 20 transition region.

The merging of the two evaluations indicate that the coupled terms have decayed suffi-

ciently via destructive interference, such that a good measure of IID is available by integrat-

ing the cylindrically spreading diffracted field which depends on use of the asymptotic form

YA(r, 0; a). The integration is made up to, but not including the transition region. The

transition region and the cylindrically spreading region outside (or slowly varying shadow

region), are analogous to the Fresnel and Fraunhofer far field diffraction regions in acoustic

scattering from finite objects 158]. Thus, the integration range expressed in Eq.( 3.64) is

equivalent to integrating over the Fraunhofer far field region, and we will carry out this inte-

gration at sufficiently large kr such that the Fraunhofer far field region encompasses all but

approximately 1 of angular space. The integral is evaluated numerically using Simpson's

rule; convergence issues and numerical error do not pose a problem because the integrand

is smoothly varying. The result nD is interpreted as the amount of power removed from

the specularly reflected field.

Some representative values of liD are shown in Fig. 3.14. Included for comparison are

the equivalent values for total diffracted power from a free surface coupled to a perfectly

rigid surface, or the infinite impedance case, as worked out in Chapter 2. The values are

presented in terms of 10 log liD in dB, referenced to the maximum power level which occurs

for the infinite impedance case at 1 Hz in these examples. (Note that IHz does not depend

on grazing angle a for the infinite impedance case.) There are some evident trends, for

example, a linear dependence of IID on frequency for the finite impedance surface. These
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Figure 3.10: Far field amplitude level Of 14D(f, 8)12 for a = 150, and locally reacting bound-
ary condititon, at fixed kr. bottom: kr = 100, middle: kr = 1000, top: kr = 10000. Solid
line uses exact evaluation of 7(r,9; ak), dashed line uses asymptotic evaluation TA(r, a;c).
Dotted semi-circle represents the 20 dB down point from the maximum level.
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Figure 3.11: Far field amplitude level Of I40D(r, 9)12 for ot = 450, and locally reacting bound-
ary condititon, at fixed kr. bottom: kr = 100, m-iddle: kr = 1000, top: kr = 10000. Solid
line uses exact evaluation of 7(r, 9; a), dashed line uses asymptotic evaluation IA (r, 0; Q).

Dotted semi-circle represents the 20 dB down point from the maximum level.
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Figure 3.12: Far field amplitude level of I0D(r,0)12 from the canonical problem for O = 150,
at fixed kr. bottom: kr = 100, middle: kr = 1000, top: kr = 10000. Solid line uses
Avft val,,tion ,f 7(r,e;a), dashed line uses asymptotic evaluation rA(r,G;Q). Dotted
semi-circle represents the 20 dB down point from the maximum level.
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Figure 3.13: Far field amplitude level Of 1t0D(r, 6) 12 from the canonical problem for & 450,
at fixed kr. bottom: kr = 100, middle icr = 1000, top: icr = 10000. Solid line uses
exact evaluation of 7(r,,P;c), dashed line uses asymptotic evaluation YA(r,6;c). Dotted
semi-circle represents the 20 dB down point from the maximum level.
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Figure 3.14: Values of 10log lD in dB for 1, 10 and 100 Hz with H =1m. The dB levels
are referenced to the infinite impedance case at 1 Hz (0 dB).

are discussed in greater detail in Chapter 4, where we present a more complete analysis of

liD in terms of varying ice and acoustic parameters.

The curious fact that r1 D increases with frequency in the finite impedance case and

decreases with frequency in the infinite impedance (canonical problem) case, has a simple

explanation. For the infinite impedance case, R is unity for all grazing angles and frequen-

cies. Therefore the far field amplitude levels presented in this chapter and the contour plots

presented in Chapter 2 are independent of frequency; a plot at kr = 1000 looks the same

whether the incident wave is 10 Hz or 1000 Hz. Thus, for example, if the diffracted pressure

field is proportional to F(9) then the relation for diffracted power is

ID O i F(o) 2 d (3.66)

and in the limit of k -- oo, lID must approach zero in accordance with geometric optics.

On the other hand, for the case of finite, locally reacting impedance, R is a function

of both grazing angle and frequency. Since Z,, = -iwplH, the ice appears 'harder' with

increasing frequency, and presents a sharper contrast with the free surface from which to
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launch a diffracted field. But we cannot, of course, continue this analysis with ever increasing

frequency for the ice model because we run into issues of a non-locally reacting impedance

and double diffraction [53]. (The latter is due to the scatter from the bottom edge and

rescatter from the nearby top edge of a plate of thickness H.) If we could continue the

analysis with increasing frequency, for example, by assuming the surface consists of a thin

film with locally reacting surface impedance independent of frequency, the total diffracted

power would eventually vanish as k --- oo in accordance with geometric optics.

3.7 Summary

We began this chapter with arguments for using a locally reacting boundary condition per-

taining to a layer of sea ice and low-frequency acoustics. In this formulation, we ignore the

part of the ice input impedance due to fiexural rigidity, and as a consequence features of

elastics wave propagation such as the flexural wave are ignored in computing the diffracted

field. Using this boundary condition a coupled half-plane diffraction problem was solved,

which serves as a model for the ice lead diffraction process. The solution used an approx-

imate kernel in the Wiener-Hopf functional equation, which allowed us to proceed to a

complete and interpretable solution. The solution is expressed in terms of the canonical

angular spectrum P(,3) which is independent of any material properties, being multiplied

by the material function M(3). The material function is derived from multiplicative de-

composition of the approximate kernel.

The solution satisfies the field equation exactly and the mixed boundary conditons to

O(c), and thus the field solution is correct to O(E) with an error of 0(0s). A power balance

for the total field was demonstrated, with the total field being the coherent sum of incident,

reflected and diffracted fields. This balance confirmed the interpretation that the diffracted

field power rID, modified reflected field power IIR, and incident field power 1j, must sum

to zero, and thus 1ID is the amount of power removed from the reflected field.

In the next chapter we compare this solution based on the locally reacting impedance

approximation to one that includes the effects of elasticity in the ice.
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Chapter 4

Diffraction problem with extended

reaction boundary condition

The results of Chapter 2 gave the exact solution of a plane wave incident upon two coupled

half-planes, one characterized by the Dirichlet or free surface boundary condition, equivalent

to a surface with zero input impedance, the other characterized by the Neumann boundary

condition, equivalent to a surface with infinite input impedance. In Chapter 3 the infinite

impedance was replaced by a finite, locally reacting impedance of the form Zin = -iwpiH.

This was shown to be a good approximation to the ice input impedance for frequencies low

enough such that the interior fields in the ice could be ignored. The infinite impedance

corresponds to a perfectly rigid surface and the finite impedance corresponds to a surface

which responds to local pressure, but with an impedance due only to an inertial term. In

both cases the impedance is independent of the spatial distribution of the incident pressure

field, which is equivalent to Zn being independent of horizontal wavenumber.

This chapter now extends the solution to the case where it is possible for the ice input

impedance to be a function of both horizontal wavenumber q and frequency w

Zi. = Z,.(q,w). (4.1)

The additional dependence of Z, on the horizontal wavenumber is known as extended

reaction 157]. Extended reaction in our problem is a result of including the elastic properties

of ice in the calculation of Z. Thus, in this chapter we derive a complete solution of
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a plane wave incident upon a semi-infinite elastic plate, which, unlike the case of local

reaction, incorporates elements of elastic wave propagation. With this solution we have a

more accurate base from which to examine the ice lead diffraction process, and compare

our earlier results based on the local reaction approximation.

4.1 Discussion of the thin plate equation

Before proceeding, we return to a more detailed discussion of the thin plate equation as

it applies to a floating ice sheet. It is important to emphasize and clarify here exactly

what properties of elastic wave propagation in the ice are included and what properties

are ignored, when the thin plate equation is used to describe the state of vibration in the

boundary plate material.

The response of the ice sheet to acoustic excitation from water can vary anywhere

between the behavior of a thick layer to the behavior of a thin film, depending on the

frequency-thickness product f H. (We work with fH here instead of the usual kH in order

to more clearly demonstrate the dependence of Zi,' on frequency and ice thickness.) For

example, let us fix the ice thickness at 3 m and examine Zj,, as the frequency decreases

starting at 1000 Hz (I H = 3000), using the typical sea ice properties listed in Chapter 3.

At 1000 Hz (Fig. 4.1 top) the ice is sufficiently thick enough to support interior modes. The

input impedance undergoes rapid change at wavenumbers which match the phase speeds

of these interior trapped modes. Thus Zrn at fH = 3000 is strongly dependent upon the

horizontal wavenumber of excitation, and computation of Zi depends on the additional

complexity of exact elasticity theory, computed here using the Thomson-Haskell matrix

representation. At 100 Hz (Fig. 4.1 middle) jZr,,I is relatively constant in the homogeneous

wavenumber region (q/k < 1) and approximately equal to I - iwp2 HI except for the rapid

change near 62' which is due to the longitudinal or symmetric Lamb mode. Note that

the longitudinal wavenumber, which is a root of Eq.( 3.3), is complex with an equivalent

grazing or Mach angle ; 62'. Further out into the inhomogeneous spectrum (q/k > 1),

IZjj goes through a zero corresponding to a flexural wave in the free ice plate with in vacuo

wavenumber kf. The input impedance at fH = 300 is accurately described by the parallel
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addition of Z_ and Z~, which are the wave impedances of the first two fundamental modes

of the Rayleigh-Lamb equations alluded to in Chapter 3, such that

1 1 1
+  (4.2)

An important distinction between the 1000 Hz and 100 Hz cases is that the former lies

above the coincidence frequency and the latter lies below the coincidence frequency, defined

by [621

c2 /1 2pi(1 - ,r2 )

Fir- V EH2

and using typical ice parameters is equivalent to f: f 375/H with H in m and f, in Hz.

The coincidence frequency represents the frequency above which the free plate flexurai wave

phase speed becomes supersonic with respect to the ambient medium. This is evident in

the 1000 Hz case where IZI, increases monotonically in the inhomogeneous region of the

wavenumber spectrum, and all trapped modes are confined to the homogeneous region,

whereas in the 100 Hz case ,Z,, passes through one final zero in the inhomogeneous region

before starting its monotonic increase. A useful interpretation of the coincidence frequency

for our purposes, is that f, represents the frequency above which higher order modal solu-

tions of the Rayleigh-Lamb equations are admitted.

Finally, at 10 Hz the input impedance is nearly exactly iwpHI well into the inhomoge-

neous spectrum, except for a small perturbation due to the longitudinal wave which remains

near the point arccos I s 620. The longitudinal wave can be viewed as non-dispersive for

our purposes, being nearly independent of f H. This is because it is more a function of the

bulk elastic properties of the plate material. The longitudinal wave impedance Z_ becomes

large in this fH range, and therefore its reciprocal has the appearance of a perturbation.

This is in contrast to the free plate flexural wavenumber which has moved out further into

the inhomogeneous spectrum, but remains a prominent feature of input impedance. The

flexural wave is dispersive and characteristic of the bending stiffness of the plate material

which in turn depends on f H. The fH value is now low enough for the thin plate equa-

tion to describe the state of vibration of the ice sheet surface. In other words, Eq.( 3.10)

can be used in place of Eq.( 3.4) to determine the flexura] wavenumber. It is conventional
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which corresponds to the cosine of the equivalent grazing angle.
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to use the simpler plate equation to describe the dynamics of a thin plate and associated

Z,, when the frequency is sufficiently low. Using typical ice parameters, accurate determi-

nation of the flexural wavenumber based on the thin plate equation has been verified for

fH < 150 168]. This value thus defines exactly what we mean by low-frequency diffraction

from semi-infinite elastic ice.

Accurate prediction of the flexural wavenumber, however, does not mean the longi-

tudinal wave has disappeared altogether; this would be equivalent to assuming Z_(q) is

infinitely large and thus having no impact in Eq.( 4.3). We have seen that ignoring the

longitudinal wave is a good approximation for lower frequencies. Although, if either plane

wave excitation corresponding to the critical grazing angle of the longitudinal wave (.s 620),

or the excitation is from an in-plane force due to a source within the ice, the finiteness of

Z_ (q) would become important 148]. But for the ice lead diffraction process, in the context

of long range acoustic propagation, the excitation will be from plane waves coming from

the ambient medium with grazing angles < 200, and we are not concerned with sources

within the ice. Therefore, the original excitation does not contain spatial harmonics which

violate the condition IZ-(q) >> I Z(q),, a necessary condition for ignoring the longitudinal

wave. Thus we do ignore certain elements of elastic wave propagation in the ice when the

ice response is characterized by the thin plate equation. But, when fH <150, the only

element ignored is the longitudinal wave which is of negligible importance, and the more

important flexural wave remains fully characterized.

4.1.1 Fluid loading

Let us examine the thin plate equation under the kind of forcing conditions expected in the

diffraction process, with

a 4
B- x4 U(z) - pHw2U(x) = -p(z,t). (4.4)

The forcing term on the right is the pressure from the acoustic field below the ice sheet.

The vertical displacement of the ice surface, U(z), is coupled to an external sound field

supported by the fluid below the ice surface, which is the fluid loading. In this case we

have a distributed, one-sided (because of the vacuum on one side) load from the plane wave
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excitation. The plane wave excitation means the spatial distribution of the loading has a

single Fourier compcnent, where, for example, an acoustic sourtz ur- er the ice presents a

linear superposition of such components. Because pressure is proportional to density, one

way to quantify fluid loading is the through the density of the ambient medium p. Thus, air

with p - 1 kg/m 3 could be considered light fluid loading and water with p - 1000 kg/m 3

could be considered heavv fluid loading. But the loading must also take into account the

spatial scale of excitation and the plate mass. A common parametric description of the

loading which includes these factors is [27]

E - (4.5)pi kH

which is a measure of the mass of fluid within one acoustic wavelength of the plate compared

to the mass of the plate. For el < 1 we have light fluid loading typical of problems found

in aerodynamic applications.

Using the thin plate equation to characterize elastic effects, the solution of a plane wave

incident upon a semi-infinite elastic plate in the asymptotic light loading limit was first

demonstrated in (46], with an alternative solution given in [12]. An essential step in the

solutions is the decomposition of the Wiener-Hopf kernel, which in this case is achieved

asymptotically in the limit of El - 0. For frequencies below coincidence, the solutions

include a coupled flexural wave propagating along the plate and assuming the form

y) = AetkfLY N/ (4.6)

with complex amplitude A and flexural wavenumber kfL. Since these solutions apply in

the limit El - 0, the wavenumber kIL is a perturbation from the in vacuo wavenumber kf.

The phase velocity of the flexural wave is subsonic (kfL > k) and the associated pressure

field decays exponentially in the y-direction. The equivalent loading parameter, however,

for the case of an ice plate ensonified at a frequency of 50 Hz is el s 51'H, with H the ice

thickness in m. This is never a small parameter under realistic conditions, and therefore

these solutions do not apply to the problem of low-frequency diffraction from an ice lead.

The other extreme is the asymptotic limit of heavy fluid loading limit and low frequency.

A parameter known as the intrinsic fluid loading parameter 121), denoted here as (2, gives
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a measure of the fluid loading at the coincidence frequency, with

pE _C2 = 12pIc2(I _ 02)" (4.7)

As such, it is independent of frequency and plate thickness, and depends only on the physical

properties of the plate material and ambient medium. For a steel plate immersed in water

C2 ; .13, and for an ice sheet c2 ;.61, and thus the degree of fluid-structure coupling for the

ice/water system is greater than that for the steel/water system. But we cannot consider

the issue of "heavy" fluid loading until frequency and plate thickness are introduced. In

other words, we must view the degree of fluid loading as how much the fluid-loaded flexural

wavenumber, denoted here as kf, differs from the corresponding in vacuo wavenumber kf.

For example, one finds that the relative difference (ks - k!)/kf, for problems involving

cm-thick steel will typically be much greater than that for m-thick ice. Use of a second

parameter in the form of a Mach number

kM -- k (4.8)

characterizes this property, and the heavy fluid loading, low-frequency regime is defined in

[21] by the double limit
M

C2 < 1, N = - < 1. (4.9)
C2

The solution of a plane wave incident upon a semi-infinite elastic plate in the asymptotic

heavy fluid loading, low-frequency limit is presented in [21,11]. As in the light fluid loading

limit, the decomposition of the Wiener-Hopf kernel is achieved asymptotically, here in the

limit N --+ 0. (In reference [11] an alternative loading parameter is used in the asymptotic

decomposition). Part of this solution consists of a coupled flexural wave assuming the form

Ofj./z(Z, y) = Ae'tk' z' -' i. (4.10)

Here, cf H is the low-frequency asymptotic limit of the flexural wavenumber with

12W Pi 1 - a.
k15H H )( -E (4.11)

and since k1 H > k the associated field also decays exponentially in the y-direction.
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The solution !or heavy fluid loading at low-frequency is slightly more akin to our problem

of sea ice and low-frequency acoustics, provided fH 1. But for the more interesting cases

of m-thick ice and frequencies > 10 Hz, N = 0(1), and we are clearly not in this asymptotic

regime. (Note that one may also view the heavy fluid loading, low-frequency regime as

satisfying the parametric range l/c1 < 1. But e remains an 0(1) quantity for m-thick ice

and frequencies > 10 Hz). Thus the fluid loading pertaining to sea ice and low-frequency

acoustics cannot be characterized by simplifying heavy or light fluid loading limits; it lies

somewhere between these limits.

In the next section we solve the diffraction problem with fluid loading pertaining to

sea ice and low-frequency acoustics. Our problem will differ from those mentioned above

not only in the fluid loading characteristics, but also in geometry since we are examining

diffraction from two coupled half-planes, one being the free surface and the other being

the elastic surface. But the crux of the problem will again lie in the decomposition of the

Wiener-Hopf kernel. In this case, though, we employ a new approximate kernel built upon

the framework of Chapter 3. This new kernel is not only valid in the 'mid-range' fluid

loading regime, but duplicates the reported asymptotic heavy fluid loading, low-frequency

limiting behavior of the kernel decompositions described in [21,111.

4.2 Solution of extended reaction diffraction problem

In this section we solve the problem of a monochromatic plane wave with grazing angle

a incident upon two coupled half-planes, one representing a free surface and the other

representing an elastic plate. The plate parameters and fluid loading conditions represent

those found in the low-frequency ice lead diffraction process. The notation and problem

geometry are the same as before, with additional notation introduced as necessary. The

problem geometry is shown again in Fig. 4.2 giving the orientation of the plate displacement

field U(x). Note that the ambient medium lies above the planar boundary y = 0 with

vacuum below, in order to be consistent with a more suitable display of the diffract-d field.

The plane wave is incident upon a surface with the following mixed boundary conditions

OT(X,0) =0 X<0 (4.12)
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0;] r

Figure 4.2: Exaggerated view of plate displacement U(z) in the positive V-direction; field
coordinate system is the same as in Chapters 2 and 3.

and

B a4U(X) _ pHw 2 U(X) = iWp4T(z,O) Z > 0. (4.13)

As before, the total velocity potential field OT is composed of an incident, reflected, and

diffracted field, with the reflected field originating from eithez of the semi-infinite planar

boundaries. In this particular case the algebra is greatly simplified if we choose a reflected

field originating from the free surface; this also maintains a parallel development with the

results from Chaptcr 3. In using a free surface reflected field, the incident and reflected

fields cancel along the boundary and thus we replace OT by OD along the boundary. The

relation between the total velocity potential and the flexural wave displacement is

iWU(z) = ±O,(Z,O) (4.14)

giving

U(z) D(Z,0) - 2ksine zCO,. (4.15)

Finally, with use of Eq.( 3.11) the boundary conditions become

D(XO)= o < 0 (4.16)
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and

d"4 kODI,(X, 0) + W 2 OD(, 0) =2ik sin a (k coo a)4 _ k41izco > .4.7
=4 O• X ) > 0 (4.17)

where the partial derivative with respect to the y-coordinate is now denoted by the subscript

y to simplify notation.

Applying the semi-infinite Fourier transform method (Jones's Method) to the boundary

conditions we find for the z < 0 condition that

G(q) = G_(q) (4.18)

since G+ (q) = 0. For the x > 0 condition we utilize the following definition, consistent with

the L+ (q) used in Chapter 3

jo (X, O)e-idx = L_(q) (4.19)

and therefore

• X4ODy(x,O)e -i0d0 = q'L_(q) + N(q) (4.20)

where N(q) is a polynomial in q which arises from the differentiation property of Fourier

and Laplace transforms [36], with

N(q) = -ODyzzz + iq4Dyzz + q2 ODy. - iq 3Dy. (4.21)

The coefficients of N(q) are constants, for example,

'PDyzzz D ODyzzz(0 + , 0) (4.22)

with 0+ indicating the elastic plate (x > 0) side of the origin. The coefficients depend on

the boundary condition of U(x) at x = 0+; specifically, if the plate edge is free to move, and

not hinged or fixed in any way such as in the case of an open ice lead, then the total force

and moment must vanish at x = 0+. These are the so-called free end boundary conditions,

requiring [36]

U .. (0 + ) = 0, U..(0 + ) = 0. (4.23)

With use of Eq.( 4.15), we find two of the coefficients

!DyxZZZ = 2k sin a(k cos a) 3  (4.24)
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and

', ,,z = -2ik in a(k coSa)2 . (4.25)

The coefficients -iObDv and 4 DvZ remain unknown at this point and will be referred to as

cl and C2, respectively, giving

N(q) = clq3 + c2q 2 + Djq + D 2  (4.26)

with

D= = 2ksin a(kcos a) 2  D 2 = -2ksina(kcoso:) 3 .

The complete Fourier transform of the z > 0 boundary condition is thus

4 wp =2ksin a I(kCOS a) 4 - AlIq4L_(q) + N(q) - k4 L_(q) + -G_(q) = f (4.27)B (q - k cos a)

with the term on the right side considered a '-' function since it is a result of a semi-infinite

(z > 0) Fourier transform. In order to proceed we need to express L_ (q) in terms of L+ (q)

and other '-' functions. For this we observe that

L+(q) + L_(q)=-V - k2 G(q) = - , 2 - V G_(q) (4.28)

giving

L_(q) = -L+(q) - q- J 2G_(q). (4.29)

With this substitution, Eq.( 4.27) becomes

2ksina[(kcosa) 4 - k4]-(q -k)L+(q)+N(q) oG_(q)[.-f/'- - k2(q -k)). (4.30)

Finally, to maintain a parallel development with Chapter 3, we observe that4!
w2 p = = ijk4

B piH f

and write Eq.( 4.30) as

(q4 - k4) L+(q) N(q) -fl +G(q q4 -43f k4 kk =O aqkoc)+ -)(-q- +v k4 4.1

with
2ksin c[(kcos a) 4 - k4](

k4 f (4.32)
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Equation( 4.31) is the Wiener-Hopf functional equation. It is similar to the ones developed

for the asymptotic light and heavy fluid loading cases and single half-plane boundary, with

common feature being the kernel

K(q) = - kV +0

(3

It is interesting to see how the Wiener-Hopf functional equation changes when the elastic

properties of the ice plate are removed. For this we set the Lam6 constant, or shear modulus

y, equal to zero, which puts E equal to zero and kf becomes infinite. In this limiting case

Eq.( 4.31) becomes

- 2k sin a
G-(q)(Vq 2 - kV + 1) (4.34)L()=(q - k cos e)

which is the same as Eq.( 3.20). It appears that the thin plate equation is a natural link to

the local reacting approximation, with the effects of elasticity removed in the latter.

4.2.1 Recovery of G_(q)

We are now at the crux of this problem, which is the issue of decomposing the kernel

when a fluid loading parameter cannot be made small, i.e., extreme light or heavy fluid

loading. Earlier we used an approximate kernel because decomposition of the exact kernel

seriously restricts interpretation and utility of the final solution. Inclusion of elastic effects

now compounds the kernel decomposition issue, such that an exact decomposition with its

attendant complexity is feasible only through a perturbation from either the asymptotic

light or heavy fluid loading limits. As before, we will employ an approximate kernel, but in

this case it must track the more complicated behavior of the exact kernel.

Writing the kernel as

K(q)= q-k 2  [l +1 (4.35)

we see that if v7 = 0, a root of the kernel is kf. The kernel is the characteristic equation

for the modes of the thin elastic plate/water system; if v = 0 there is no fluid loading and

in vacuo dynamics govern the problem. For Yr 4 0, the roots of the kernel must be found

numerically, which we do using the Newton-Raphson method [36], starting the iteration
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from k! as a "seed" value. It is emphasized here, that there exist only two significant or

real roots to the bracketed factor in Eq.( 4.35) [20], and these will be called ±k,, which

relate to the undamped, subsonic fiexural wave. In the limit of w --+ 0 the roots can be

determined algebraically from Eq.( 4.11).

We now focus on the bracketed factor in Eq.( 4.35) which houses the problem in the

kernel decomposition. If we allow k! to become infinite, such as in a limp plate, we have

the same factor as the one already successfully approximated in Chapter 3. Let us call this

form k(q), as in Appendix B, where

k(q) = + 1. (4.36)

Now observe that k(q) • (1 - j,) shares the same moments (through the third moment) as

the bracketed term. In other words, if the bracketed term is kl(q), then

dm k1 (q) _ dm k(q)
dqM  dqm  (4.37)

evaluated at q = 0 for m = 0 through 3. This stems from the moment generating relationship

between transformed quantities. Thus we can approximate the bracketed term by k(q) . (1 -

fi) to the same accuracy existing in the approximation for the local reacting case of Chapter

3. The details pertaining to this approximation, and a comparison with one of the known

asymptotic kernel decompositions, are given in Appendix C.

An essential feature of our approximate kernel in this case is that it shares the same

real root ±k. Other roots from the exact kernel are not retained; but these depend en-

tirely upon the branch cut configuration in the root finding procedure, and would relate

to non-propagating, evanescent waves, of no physical significance. We also agree that two

additional, and entirely spurious, roots have been introduced these being ±ik1 . But these

roots belong to the same class as the excluded roots whose residue contributions are expo-

nentially small. We show later in the inversion that residue fields corresponding to the ±ikf

roots are always severely exponentially damped. Finally, the creation of spurious roots is

not a property isolated to our approximate kernel method. The asymptotic decompostion

method will also introduce its own set of spurious roots [11].



Upon using the decomposed approximate kernel

k (4.38)
k+(q)

the Wiener-Hopf equation becomes

(q4 - k+ + (q - k cos)K+(q) = G- (qk-(q). (4.39)

f f

An additive decomposition of the last term on the left gives two terms analogous to

Eqs.( 3.24) and ( 3.25), these being

R _(q) = nK+(kcosa) (4.40)
(q - kcosa)

and
- 1k+(k cos a) fok+(q) (4.41)

(q - kcos ,) (q-kcosa)(

Using the above, Eq.( 4.39) assumes the form

(q4 - L4/) L + (q) - N(q) k+(q) + R+(q) - -R-(q) + G- (q) k-_(q) = E(q) (4.42)

where E(q) is an entire function. Note that the polynomials (q4 - k) and N(q) are analytic

in the entire finite complex q-plane, and we can regard these as 'neutral' in terms of their

or '-' classification.

The decomposed kernel assumes the form

(_q) -(qiv'-+I7) (q -kAj)( ) ;q"- -

k-()=.I- • ,1 + )e ,r (4.43)(q - kA2) k +

___________ (q +kA 2 ) (1-e
()=(q + jirk - ) " (q + kAj) ' k( +- .

These are very similar to the K- and K+ decompositions employed in the local reacting

problem [Eq.( 3.27)], for example, the constants Al and A 2 are different here but perform

a similar role. The e'4 factor is necessary to preserve the property of evenness (59] in the

approximate kernel, this being

_(q) -k+(-q) = 1. (4.44)
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Strictly speaking, the eA factor should also be included in Eq.( 3.27), but it cancels out

when the decomposed kernel is implemented in the inversion; this will not be the case here,

however. The parameter ri = (kfl/kf) 4 is used to insure proper behavior of k(q) as q --+ oo.

We are now ready to determine the nature of the entire function. Examining the '-'

side ci Eq.( 4.42) we have

G_~-qj- -  k- -~jIq R_.. lql-' q -o

and for the '+' side we have

L+ - Iql r kf+- jqj4 R+ - lql-' q - co

where in G_ and L+, we have used the asymptotic properties established in Chapter 2.

Taking into account the polynomials (q4 - k4) and N(q) - Iql3 , and the fact that v > 0, we

construct the combined '-' and '+' functions which have the property

IF_(#~ < jqJ13 IF+(#~ < jqJ33 q - oo.

Thus, the explicit version of Liouville's theorem stated in Chapter 2 tells us that E(q) is a

polynomial of degree 1 or less, giving

E(q) = eo + eiq. (4.45)

The constants e0 and el will be determined later, but for now we may write

1 flK+(kcosa) 1
G_(q) - [eo + elq + nk(kcos) (4.46)

k_(q) ( oa-

4.2.2 Determination of e0 and el

The constants eo and el which originate from the behavior of the entire function, are now

resolved together with the unknowns ci and c2 contained in N(q). The four equations

necessary to resolve the four unknowns are derived by removing the so-called apparent

singularities (11,21]. Examining the '+' side of Eq.( 4.42) we find that

0) L +(q) E + N(q) k- R+(q) (4.47)f -+(q) +k+(q)
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The function L+ thus has singularities at ±kf and ±ikf; but kf and ikf lie in the upper

half-plane where L+ is supposed to remain analytic. (Recall from Chapter Two, that L+ is

analytic for Im(q) > -k 2 .) The removal of these singularities creates two equations

E(q) = R+(q) - N q)k+(q) q = kf,ikf. (4.48)

Two more equations are derived from Eq.( 4.27) in the same manner. Here L- has singu-

larities at -kf and -ikf which lie in the lower half-plane where L. is supposed to remain

analytic. (L-, like G_, is analytic for Irn(q) < k2.) The removal of these singularities

creates the additional two equations

2k sin a[(k cos a)' - k] 4

(q - k cosa ) f N(q) - )kfG(q) = 0 q = -kl, -ikf. (4.49)

Now let the four unknowns form a column vector x with

eo

el_x = (4.50)

C1

C2

and the coefficients of these unknowns form the coefficient matrix A, such that

A x=b. (4.51)

The column vector b depends upon the end boundary conditions for the elastic plate which

in our case are the aforementioned free end boundary conditions.

The unknowns are resolved through

=A-b (4.52)

with

k (k)
kf

I iq k+(ikf) k+(ik1)
I ik -ik

=k-kf) f( - f (4.53)
1 -k! - _-('__)

1 - ik "k-(-ikf) k-(-ikf)
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and

R.,(k:) - Rkf(Ck. + D)

R+(ik 1) (tck + D)

k_(-) 1 Ck1-D -! n +)k] kc+,a)

k-(- ik) iCk-D n+(co17 1 k; (ik/+k co, 4) + J(kf+A COC j

with inversion of A performed numerically using the MATRIXX numerical library [2].

In resolving a system of linear equations, errors in the coefficient matrix can cause errors

in x. The degree to which these errors propagate is measured by the condition number of

the matrix x(A). If x(A) is large, the matrix may be ill-conditioned and small errors in A

may change A - ' significantly enough to cause large errors in z. A guideline to this error

propagation is [30]

logio(,c(A)) = m (4.55)

where the loss in precision in the z vector is at most m significant digits. For example, if

an element of x is .56321 and m = 3, the significance of the decimal digits beyond .56 may

be unwarranted because of the effects of the numerical inversion of A. In our case (A) is

typically 0(100), a number to be aware of, but not large enough to cause concern.

A related issue is the accuracy of the elements in A, specifically, whether the decompo-

sitions of the approximate kernel, K+ and K-, are accurate at the values ±kf and ±ikf.

In generating k(q) we used a four moment fit of the exact kernel K(q) (Appendix C). But

this does not guarantee accuracy of K(q) near ±k/ and ±ikf, where the latter is off the

real-q axis. For this we employ two additional approximate kernels, with the same number

of unknowns Al and A2 as used in k. But in this case the unknowns are determined by

matching the zeroth moment or area, plus matching or "tagging" the value of the exact

kernel at ±k/ and ±ikf. These will be called tagged kernels, with one tagging the value of

the exact kernel at ±k/ (kf-tagged) and the other tagging this value at ±ikf (i/kf-tagged).

In addition to providing accurate values for the coefficient matrix A, the method of tagged

kernels opens up another route for which to implement approximate kernels in Wiener-Hopf

problems. Details of the tagged kernels are presented in Part II of Appendix C.

93



4.3 Inversion of the diffracted field plane wave spectrum

In the inversion of G_(q) back to OD(r,O), we will try to parallel as much as possible the

inversion pathways established earlier. The inversion in this case begins with the integral

OD X,1 flk+(k cos a) , q 2-2d__4d6

0D(,y) = o K(q)I + elq (q - kcosa) ]eZie- . (4.56)

As before, two types of fields, SDP and residue, will come out of this inversion. For the SDP

fields it will be convenient to separate eo and el from the third term within the brackets

because the latter gives rise to SDP fields which parallel those determined in Chapter 3. In

this case there are two residue fields, one corresponding to the angle of specular reflection

which we have seen before, the other corresponding to the coupled, subsonic flexural wave.

Before proceeding, though, it will be useful to confirm the dimensions of the various

functions and constants introduced thus far. In this thesis the incident field Ofj is a plane

wave velocity potential of unit amplitude. (We work with velocity potential, but when

reporting the total diffracted power lID, we make the conversion to an incident plane pres-

sure wave of unit amplitude which or 1 Pascal.) Given that 'kn'kR and OD are velocity

potentials, the implicit dimension of the unit amplitude factor is IL 2 /T]. In Chapter 3 the

SDP diffracted fields assumed some combination of the form

OD(r,0) = XM(O)P(O) - + O(-) (4.57)
N/T _r (kr)12

where X is a complex constant, M(O) is the material function, and P(O) is some dimensionless

far field radiation pattern. The dimensions of x and M(O) are

[xl = [k] [M(O)] = [k=]

such that OD remains dimensionless with implicit dimension of [L2 /T]. We will subsequently

show that x and M(O) maintain these dimensions with [x] = [fnk+l in this chapter, and

with

[n] = [k] [k+] = [k'] [k_] = [02].

These establish the dimensions of eo and el giving

[eo] = [k'2 [el = [k2
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such that the integral in Eq.( 4.56) is in fact dimensionless, and the elements of the A x = b

operation are dimensionally consistent.

4.3.1 The SDP and geometric vave fields

Let us begin with the third term within the brackets and write

flk+(kco )f .o IODA 2, ) = 2r -00 _ () j~ k oo 0 e4eVVT-_Tdq(4.58)J_. K-(q) (q-

where the additional A in the subscript distinguishes this term from the first two terms

within the brackets of Eq.( 4.56). Employing the transormations used previously, we write

ODA(,. ) = x fr 14.59)

The inversion contour r, similar to the one in Fig. 3.2, is shown in Fig. 4.3. The P(6) is

the canonical angular spectrum used in Chapters 2 and 3, with

nk+(k coo a) (4.60)

and M(P) is a new material function, based on the approximate kernel developed in this

chapter, of the form

-(4.61)
k-( . (-k cos.)

Equation( 4.59) is strictly analogous to Eq.( 3.29), where the decomposed kernels k+, k_

are from Eq.( 4.43). It is emphasized here that Eqs.( 4.60) and (4.61) are also analogous

to Eqs.( 3.30) and (3.31), respectively, but not the same. We will reuse the established

relations for these expressions found in Eqs.( 3.36) and (3.37). The common thread run-

ning through all three diffraction problems is the canonical angular spectrum P(/9), which

assumes the same form established in Chapter 2.

The material function, like the one introduced in Chapter 3, is well-behaved for 0 <

Re(0) < ,r. But since k_(q) contains zeroes at q = and q = ikf, these translate into

poles in M(8f) at

arccos(--&) (4.62)

and

-arccos("-!!) (4.63)

k
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r(0) r(o)
0 < r/2 0 >r/2

Figure 4.3: Orientation of the subsonic flexural wave pole with r(o). Three SDP contours
are shown. They are from left to right, 8 < 9,0 = Z and 9 > E

respectively. The residue contributions from these poles are discussed in the next section,

for now it is sufficient to note that any steepest descent path r(o), characterized by real

angle 0, will not have a saddle point which lies close to either of these poles.

Figure 4.3 shows the orientation of the subsonic flexural wave pole with the SDP contour

r(o). In deforming the r contour to r(o), one sees that the flexural wave pole is captured

only if the observation angle 0 is greater than r/2. We have encountered this property

before, with the pole at the specular angle 8 = r - a, and the result was to express the

field in the vicinity of 0 = r - a in terms of the Fresnel integral such that the field remains

continuous across the line 0 = r - a. For the flexural wave pole, however, we will not

employ the Fresnel integral, since it adds unnecessary complexity without the benefit of

improved accuracy. This is because the flexural wave field always decays exponentially in

the y-direction, with the maximum rate of decay along the line = E, and has nearly

vanished at the point kr >> 1 where the SDP fields become valid.
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Thus we proceed with the analogy between Eq.( 4.59) and Eq.( 3.29), and write

ODA(r, 0) = X f [P 1(O) + P2 (#)jM()Ckr(P)dA (4.64)

giving

ODA1(r,O) = (1 - i)ViXPI(O)M(9) r +o(- ) (4.65)

with a remaining part

I= Xf P2 (,6)M(#5)e'hrcO°(C-O)d/3 .(4.66)

Equation( 4.66) is analogous to Eq.( 3.34), yielding a residue field contribution for the

angular sector 0 > 7r - a. We identify this as a geometric field, with

(r,- )Ckr cosin+e)r (4.67)

The equality of Eq.( 3.37) also applies here, giving 4 ggo the correct complex amplitude of

1 + R(a). Here the reflection coefficient R(a) is that of a thin plate in which the elastic

properties are modeled by the thin plate equation, with

R(c-) = Zi-(c) + r-n (4.68)=i(C + rw-

and Zi, is the input impedance from Eq.( 3.10). Having accounted for the pole in Eq.( 4.66)

we can express the rest of the integral in a way analogous to Eqs.( 3.39) and ( 3.40), giving

DA2(,) + R()(r,0; (4.69)

plus

bDA3r, O) = (1 - i)VI7rP(P2O)[M(O) - M(7r - cc)] +0( (4.70)
e,6DA(rO = X (kr) A

The remaining portion of the integral in Eq.( 4.56) is denoted

1 00 1 +_k
ODB(X, Y) = - -e + [e (4.71)

which we express in polar coordinates as

'kD(~,) =kr sinf3.
rDB(r, ) - cosf n l[-e0 + elkcosf M()ekrc-i)d (4.72)fl.

7(4.72)
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Since this integral is well-behaved for 0 < Re(#9) < ir (cos ; is not a problem because M(P)

vanishes at P = 0 and 7r) thus we can use the SDP evaluation method [Eq.( 2.38)] directly

and write

ODB(r, 0) (1 i) k sin -eo + eikcos0]M(O) ei r +0(- ). (4.73)2vxcos 'kr ()5

4.3.2 The coupled, subsonic flexural wave field

The diffracted field plane wave spectrum represented by the integral in Eq.( 4.56) has now

been completely inverted except for the contribution due to the flexural wave; we will call

the flexural wave contribution ofLez. The fiexural wave arises from the pole at q = kf; here

it is more convenient to maintain the z, y coordinate system for evaluating the residue. The

pole at q = kf, and the one at q = ikf, are due to equivalent zeroes in K- (Eq.( 4.43));

because both poles lie in an upper half-plane with respect to the inversion contour, their

residues are captured only for x > 0. Therefore the pole at q = ik1 always gives an

exponentially damped residue contribution of no physical significance and will be ignored.

We evaluate Eq.( 4.56) for x > 0 by extending the inversion contour into a semi-circle in

the upper half of the complex q-plane with the residue contribution at k1 giving

Ofje(x, y) = Ae' (4.74)

where

A= e +-e + k(kcos a) ( - - kA) (4.75)

The inversion of Eq.( 4.56) is now complete, with the total diffracted field being the

coherent sum of five component fields

OD = ODA1 + 4 DA2 + ODA3 + ODB + OfLez. (4.76)

The first three component fields are analogous to those found in the local reaction case. The

additional cylindrical field DBb and the surface wave field Ofle: are the result of including

the elastic properties of the thin plate in the diffraction process.
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4.4 The diffracted field and check of the boundary condi-

tions

Because the component fields, with the exception of ozf,,, are not individually observable,

meaningful interpretation must be reserved for their coherent sum, and the component fields

themselves are only of academic interest. Nevertheless, partitioning into component fields

was an effective strategy for inverting the Fourier integral of the diffracted field, which was

the end product of the Wiener-Hopf procedure. The new set of component fields allows one

to compare the changes between the local reaction case and the extended reaction case, with

the latter including elements of elastic wave propagation. One such change is the additional

residue contribution due to excitation of the flexural wave; another change is the additional

SDP field which we call ODB.

Let us repeat the display of the component fields for the case of extended reaction.

Here, as in Chapters 2 and 3, the incident field is a monochromatic plane wave of 50 Hz

with i -= 150. The material now is ice with P2 920kg/m 3 , H = 2m, and the ice elastic

properties represented by cl = 3500m/s and ct = 1800m/s with Poisson's ratio o = .32

and Young's modulus E = 7.92 109Pa. The phase speed of the coupled flexural wave

with wavenumber k! is 616 m/s, down from 748 m/s which represents the in vacuo (k f)

phase speed. Note that the coupled flexural wave is subsonic with respect to the water sound

speed but supersonic with respect to the air sound speed, and thus there is propagation and

subsequent energy loss into the air medium due to the flexural wave. But with the air density

1000 times less than ice/water density, the energy loss will at most be a small perturbation

and our vacuum approximation for the air medium remains a good one. Contours of equal

amplitude level for ODA1, ODA2 and ODA3 are shown in Figs. 4.4, 4.5 and 4.6. These are

the extended reaction counterparts to Figs. 3.3, 3.4 and 3.5.

The additional cylindrical spreading field ODB is shown in Fig. 4.7. Inclusion of elasticity

in the diffraction problem gave rise to this field together with the coupled flexural wave.

The overall level of ODB is considerably lower (by about 20 dB) than the other component

fields, and therefore, in the ice lead diffraction process, ODB plays a minor role in the total

diffracted field. Nevertheless, 4'DB is of particular interest because the directivity of this
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Figure 4.4: Contours of equal amplitude level for ODA(r, 0) with a = 150. The boundary
discontinuity at the origin is marked by the triangle, with the free surface on the left side
and the elastic thin plate surface on the right side. The distance from the origin is in units
of 10. kr. The contour levels are in dB referenced to a unit amplitude incident wave field.
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Figure 4.5: Contours of equal amplitude level for ODA2(r, 0) with a = 15'. The boundary

discontinuity at the origin is marked by the triangle, with the free surface on the left side

and the elastic thin plate surface on the right side. The distance from the origin is in units

of 10- kr. The contour levels are in dB referenced to a unit amplitude incident wave field.
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Figure 4.6: Contours of equal amplitude level for ODAs(r, 0) with a 150. The boundary
discontinuity at the origin is marked by the triangle, with the free surface on the left side
and the elastic thin plate surface on the right side. The distance from the origin is in units
of 10. kr. The contour levels are in dB referenced to a unit amplitude incident wave field.
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field, unlike the other component fields, does not strongly depend on grazing angle a. The

only a dependence lies in the constants e0 and el, and these seem to change in a manner such

that the directivity remains unchanged with change in a. The ODB directivity is similar to

a dipole, but with the maximum level of its far field radiation pattern off the vertical axis

by roughly 200 for this example. One expects the directivity properties of the ODB field

to be similar to the total diffracted field resulting from an ice-borne flexural wave incident

upon a discontinuity such as a floe edge, and thereby acting as a possible source of ambient

noise in the Arctic waters [47].

Returning to the focus of our problem, the coherent sum of the component fields

ODA1, ODA3 and ODB is shown in Fig. 4.8. This combined field is qualitatively rather differ-

ent from the analogous combined field for case of local reaction (Fig. 3.6). The reason for

this is unclear, but small changes in the reflection coefficient phase (cf. below) will establish

a different coherent relation among the various component fields. The total diffracted field

is shown in Fig. 4.9, and included here is the contribution from the coupled flexural wave

for x > 0 [Eq.( 4.74)]. One notices that qualitatively the diffracted field from the extended

reaction case is quite similar to the one for local reaction (Fig. 3.7). Adding the flexural

wave raises the level of OD only a small fraction along the x > 0 boundary for the extended

reaction case. Also, the -60 dB contour for the local reaction case lies slightly further into

the backscatter region than for the extended reaction case. Evidently this is due to the

small increase in Zin for the local reaction case over the extended reaction case.

The reflection coefficient for the extended reaction case is

R(a) = -. 9814 - .1918 i. (4.77)

For the equivalent local reaction case presented in Chapter 3 the reflection coefficient is

R(ci) = -. 9786 - .2056 i. (4.78)

In both cases [RI = 1, however, by incorporating effects of elasticity in the ice, the input

impedance modulus is reduced or "softened" by a small amount

= (cos )4  (4.79)
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Figure 4.7: Contours of equal amplitude level for ODB(r,8) with a = 150. The boundary
discontinuity at the origin is marked by the triangle, with the free surface on the left side
and the elastic thin plate surface on the right side. The distance from the origin is in units

of 10. kr. The contour levels are in dB referenced to a unit amplitude incident wave field.
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Figure 4.8: Contours of equal amplitude level for the superposition of ODA1 (r, 0), ODA3(r, 0)

and ODB(r,O) with a = 15'. The boundary discontinuity at the origin is marked by the
triangle, with the free surface on the left side and the elastic thin plate surface on the right
side. The distance from the origin is in units of 10 • kr. The contour levels are in dB
referenced to a unit amplitude incident wave field.
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Figure 4.9: Contours of equal amplitude level for OD(r,O) with a = 150. The boundary
discontinuity at the origin is marked by the triangle, with the free surface on the left side
and the elastic thin plate surface on the right side. The distance from the origin is in units
of 10. kr. The contour levels are in dB referenced to a unit amplitude incident wave field.
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such that

A" = -iwpIH(1 - C,) (4.80)

with E.=.06 in this example. With consideration of Eq.( 4.68), the small value of e, accounts

for the observed change in R. We note that for small grazing angles a < 150, the parametric

dependence for the reduction in Zi,, from its equivalent local reacting value is c, = (kH) 2

with C - .33. The C parameter is an intrinsic property of the water and sea ice material

properties, being independent of frequency and ice plate thickness.

Before confirming that our solution satisfies the mixed boundary conditions, let us first

review the hierarchy used in Chapters 2 and 3 for examining the accuracy of the solution

along the planar boundary. Plane wave fields, or fields which orginate from residue contri-

butions, are considered 0(1) fields and their coherent sum must satisfy the mixed boundary

conditions exactly. Cylindrical wave fields which arise from SDP contributions and are ex-

pressed in terms of an asymptotic series in c = 1//IV'r, must also satisfy the mixed boundary

conditions, but the accuracy here need be only at the level of their lowest order O(C), and

we tolerate errors in the next order which is O(c) 3 .

For x < 0 the boundary condition Eq.( 4.12) is satisfied by the incident and free surface

reflected fields, giving the equivalent boundary condition for OD as Eq.( 4.16). No residues

in the integral representation of OD(X,O) are captured for z < 0, and the fields resulting

from SDP evaluation, ODAI and 4 'DAS, plus the asymptotic form of ODA2, are in exact anti-

phase to 0(c) satifying Eq.( 4.16) to the same order. Note that PDB vanishes along the

entire y = 0 boundary and so does not enter into this boundary condition.

For z > 0, the relevant boundary condition is Eq.( 4.17). First, let us confirm whether

the residues correctly balance. These residues are from the following integrals which are

derived from Eq.( 4.17):

OD (Z'1 + l K+ (k cos a) Ie*q Z dq (4.81)
- [c(q) (q - k cos a) 2)r

ODy(XO)- f)oo ___ + lik+(k cosa) le dq (4.82)

of0+k-q+ (q -kcos ) 2r

d4 4D (x, 0) / 0 q 4/ [eo +e1q + f + (k cos ) I iqz dq. (4.83)

dx 00 k- 0+q+ (q-k cos a) 271
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Each integral yields a residue contribution for the poles at q - kcos c and q = kf; for the

pole at q = k cos a the residue contributions are

O X0) in' e ik too ax (4.84)

D(xo) = k(kcos a)

( -flk sin a eikcos Z (4.85)
k(k cos a)

d4 Dy (z, 0) _ -(k cos)4n'lsin : ikcosaz (4.86)

dx4 k (k Cos ac) e

Entering the abo,e into the right side of Eq.( 4.17), we find that the equality

-(kcos)4flksina k4nfksin a W2P in
f + 2iksin a[(kcosa) 4 - k ] (4.87)k (kCos o) k(k Cos c) B (k cos a)=f

must hold for the residue contributions at q = k cos a to be balanced. To confirm this

equality, we use the established relations from Eqs.( 3.36) and ( 3.37), where in this case

the constant in is strictly analogous to the -2ik sin a found in these equations, giving

inin 1 + R (4.88)k (k cos o,)

where it is understood that R = R(ct). We recast Eq.( 4.87) using the relation between B

and k! giving

(1 + R) iHp kH[(-cos a ) 4 i_.]1 - 2iWplH[(-kcos )4 - 1] = 0. (4.89)

1 W l! Ic kainal j kf

This is an exact equality in light of the definition of the reflection coefficient [Eq.( 4.68)]

and therefore the residues from the pole at q = k cos a are balanced.

The pole at q = kj! arises from a zero in the decomposed kernel k. (q). We have already

evaluated the residue contribution of OD(x,0) due to this pole [Eq.( 4.74)], and therefore

expect the following:

kDv(X, o) - 2 - k2Aeik (4.90)

and d4¢Dv(x, o)

dx4  f= JfT - k2AeI (4.91)
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as residue contributions for Eqs.( 4.82) and (4.83), respectively. Collecting the three residue

contributions we find that

f f2 + B w2+ =.0 (4.92)

is a requirement for the residue contributions from the pole at q = k1 to balance. But

Eq.( 4.92) is simply the characteristic equation [Eq.( 4.35)] restated, and since k! is nec-

essarily a root of the characteristic equation, the residues from the pole at q = k are

indeed balanced. With this we have demonstrated that the boundary condition for x > 0

is satisfied exactly by the plane wave fields.

To evaluate the z > 0 boundary conditions for the SDP fields, let us recast Eq.( 4.17)

into

k4 d4b~ () = 1}OD(X,0). (4.93)

(Note that we did not include the right side of Eq.( 4.17) because this belongs to the residue

balance.) The above is the extended reaction analogy to Eq.( 3.44); let us also examine

this equation in terms of an asymptotic balance in powers of e as in Chapter 3. First, we

observe that the leading order term of the SDP contributions to 4OD(z,0) vanishes, because

ODA3(z,O) and ODA2(z,O) are in exact anti-phase at the 0(c) level, with ODA1(X,0) and

4DB(z, 0) vanishing along the boundary for z > 0. Now to strike an asymptotic balance

between both sides of Eq.( 4.93) requires the two terms on the left side to also vanish at

the 0(c) level. The integral representation of the first term is given in Eq.( 4.82), and

in a manner exactly parallel to the analysis of Eq.( 3.45), one sees that the leading order

behavior of this term is 0(1/(kx) ) or 0(0), meaning this term vanishes at the 0(f)

level. The second term behaves the same way, with its leading order behavior being exactly

(k/kl)4 times thpt of the first term, and the asymptotic balance of Eq.( 4.93) is confirmed

to the 0(e) level.

We return a final time to the Karp-Karal lemma as we are applying it to the ice lead

diffraction process. The Karp-Karal lemma applies only to a local reacting, finite impedance

boundary condition. In Chapter 3 we worked with such a boundary condition [Eq.( 3.12)]

and observed that the behavior of OD along the finite impedance boundary conformed with

this lemma, namely that the 0(e) behavior had vanished and the lowest order was 0(0 3 ).
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We can recover this same boundary condition from Eq.( 4.93) by allowing the Lamd

constant p -- oo, and thereby k! -- oo. But for 1 : 0, or the case of extended reaction,

there exists an 0(1) plane wave field along the x > 0 boundary in the form of the coupled

flexural wave Oft,.. The flexural wave is a residue contribution of O6 D and was shown

to be appropriately balanced along the boundary. We will show subsequently that the

allocation of the total diffracted field power between of,ez and the rest of the component

fields in Eq.( 4.76), strongly favors the latter. Thus if we ignore for the moment the power

contribution from the ol, component field, we can say that 4)D(X,0) also vanishes in the

extended reaction case at the 0(c) level with the leading order being 0(c0).

The 0(c 3 ) leading order behavior of OD(X,O) implies that the intensity of OD(X,O)

1/(kx) s . That is, for x = I Z A, where A is the wavelength in the ambient medium, the

intensity level of OD(X, 0) has diminished in excess of 24 dB. This property will be exploited

in the next chapter when we apply our results to diffraction from finite-length ice leads of

some characteristic length Z I.

4.5 Total diffracted power for extended reaction case and

comparison with local reaction case

In this section we examine the total diffracted power I1 D due to a monochromatic plane

wave incident upon a free surface coupled to a semi-infinite surface composed of a layer

of sea ice. This is our basic model for the ice lead diffraction process. In view of the

Karp-Karal lemma, the semi-infinite aspect of the model is not a serious restriction. There

are, of course, other limitations placed on the interpretation of IID which arise from the

two-dimensional geometry, limitations no different from those which pertain to the majority

of solutions to range-dependent problems in ocean acoustics e.g., the difficulty in handling

out of plane scattering effects. Notwithstanding these limitations, our solution based on

idealized geometry reproduces the essential physics of the problem and can be used as an

approximate solution for more realistic geometries.

The total diffracted field power is divided between the portion carried by the radiating

cylindrical wave and the portion carried by the coupled subsonic flexural wave. The latter
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is defined here as
nf lez =o (I.) dy (4.94)

where (I,) is the z-component of the intensity vector as derived from Eq.( 4.74). The y-

component of the intensity is imaginary for the flexural wave and thus there is no energy

radiating across planes parallel to the x = 0 surface. The total diffracted field power consists

of the two terms

riD = IIDcV1 + yflez (4.95)

where HDvCv1 is based on the precise definition of integrated Fraunhofer far field intensity

discussed in Chapter 3.

We define a measure of the energy partitioning between flDCYI and nfiez as

10 = log 10 nDyl (4.96)
ap = ~logo Hyez

in dB. The value of ap is plotted against grazing angle a in Fig. 4.10 for diffraction from 2

m-thick ice layer with the incident field frequency at 50 Hz. We see that this ratio increases

with grazing angle starting at about 26 dB. Furthermore, we will find this value to be in

excess of 20 dB for all examples pertaining to sea ice and low-frequency acoustics, and

therefore we may ignore the power carried by the coupled flexural wave in the ice lead

diffraction process. This is not surprising considering the large disparity between the phase

speed of the coupled flexural wave, e.g. 616 m/s for 50 Hz and H =2m, and the ambient

medium phase speed of about 1450 m/s

In the following examples we compare the diffracted power -IDcv, which we now refer to

as the total diffracted power, with the corresponding value of total diffracted power derived

from the equivalent locally reacting surface, i.e., the semi-infinite ice sheet consists of a

layer of H m and density P2 = 920kg/m S. Figure 4.11(top) shows the effect of the grazing

angle a on total diffracted power for a 2 m-thick ice layer with the incident field frequency

at 50 Hz. There is sin 2 a (- a2 for a 4 20') dependence evident in this figure as indicated

by the dotted line.

Next we examine the effect of frequency; for this we fix H = lm, a = 15' and span the

range fH = 1 to 150 Hz-m. (We do not consider the limit of f - 0 Hz because gravitional
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Figure 4.10: The ratio of cylindrical wave power '1 D,11 to coupled flexural wave power l11z,*
in terms of r,, as a function of grazing angle a

effects would become important in Eq.(4.13) for frequencies below .3 Hz [68].) The results

in Fig. 4.11(rniddle) show a negligible difference between the local reaction case and the

extended reaction case for fH ~c 50, and indicates a clear linear dependence of lID on

frequency at least for the locally reacting case. Finally we examine the effect of ice thickness

H; for this we fix the frequency at 30 Hz, a = 150 and again span the range fH = 0 to 150

Hz-m. The results in Fig. 4.11(bottom) also show a negligible difference between the two

cases for fH < 50, but the dependence on H is clearly non-linear.

Let us now study these results using the equivalent locally reacting ice surface as a

guideline. In Chapter 3 we showed that the material properties of the semi-infinite sur-

face modified the diffracted field OD via the rather complicated material function M('3)

[Eq.(3.31)], and the -dependence of a field point assumed the form M(O)P(9). On the

other hand, in the course of checking the boundary conditions we determined that the

material properties of the semi-infinite surface modified a boundary point by the simple
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Figure 4.11: Total diffracted power for extended reaction case (solid line) and local reaction
case (dashed line), top: as a function of grazing angle a~, middle: as a function of frequency
with H = Im, bottom: as a function of H with frequency =30 Hz.
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expression 1 + R [for example, cf. Eq.( 3.41)].

From Green's theorem, the integral of the values of OD and its normal derivative along

the boundary uniquely determine the value of OD for a field point. This integral is of the

form (59]

M 1 f , [g i, D(rO) FO),OD(fo)dSo (4.97)
4r =, 0 no no

where g(F, rf) represents a two-dimensional Green's function and F, f, are the respective

field and boundary coordinates; the integration along the boundary So is along the planar

interface y = 0 in our case. A suitable Green's function for our problem is the Hankel

function which satisfies the free surface boundary condition, and which we emphasize has

no dependence on the material properties of the boundary surface. Therefore, we can say

quite generally that the diffracted field behavior is

pD(r,0) = (1 + R)F(0) e-. r  (4.98)

for a field point in the Fraunhofer far field. Here pD(r,O) is the diffracted field pressure

and F(O) is some general far field radiation pattern independent of material properties and

frequency, which we do not specify further. Thus we have

ID = .5Re[(1 + R*)(1 + R)] Jf IF(O)12dO (4.99)

where the integration is assumed to be over the Fraunhofer region. This tells us that

nI ~ 1 + Re(R) (4.100)k

with

-iwplH + r-"

We now observe that

2(wpiY) 2  2(wpig)2

1 + Re(R) = (wlH) 2 + ( 2 2(..H) 2 +O[(kH sin a)'] (4.102)
,ksn a ,koinao

giving a parametric dependence for the total diffracted power from a locally reacting surface

as

nD _ (L)2kH2 sin 2 Ck. (4.103)
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Equation( 4.103) fully explains the above results for the locally reacting case, for ex-

ample, the sin 2 ca behavior of Fig. 4.11(top), the linear dependence on frequency in

Fig. 4.11(middle), and the kH 2 dependence in Fig. 4.11(bottom). If fH <
- 50 then

Eq.( 4.103) nearly fully explains the results for the extended reaction case, which means

this fH range is almost entirely dominated by mass loading effects as far as the ice lead

diffraction process is concerned.

For fH < 50, the results for the extended reaction case begin to diverge from the basic

dependencies described in Eq.( 4.103). But, knowing the flexural wave carries only a small

fraction of the total diffracted power, we can also proceed with the same Green's theorem

arguments as in the local reaction case, using for the reflection coefficient

-iwpiH(l - e(kH)2 ] -

R = -iwpiH[1 - (kH)2 ] + (

where z .33 as discussed earlier. This gives a parametric dependence for the total

diffracted power from an elastic ice (thin plate) surface as

l-t , (L2)2kH 2sin2 al - 2C(kH)2 ] + O[12 (kH)4 , (kH sin a)4 ]. (4.105)

Equation( 4.105) provides the necessary correction for the effects of elasticity. For example,

at 30 Hz with H =5m, 2 (kH) 2 = .28 and this value accounts for the difference between

the local and extended reaction cases at fH = 150 in Fig. 4.11(bottom); this difference

being - 1.3 dB.

Thus far our work has been limited to the fiH <' 150 range or kH < .65. We took this

value from ref.[68] because it represents the range for which the coupled flexural wavenumber

for an ice plate can be accurately derived from the thin plate equation. We would like

to extend this range, knowing the accuracy of the coupled flexural wavenumber will be

diminished. But our purpose here is to provide a first order correction for the effects

of elasticity in the ice lead diffraction process. As a guide for this we use a traditional

bound for the application of the *hin plate equation in structural acoustics 143] which is

kfH < 2,r/5. Using the typical sea ice physical parameters, this is equivalent to fH < 250

or kH <
. 1 which defines a less conservative range of applicablity for our results. We note

that fH < 250 keeps us well below the coincidence frequency fH -Z 375 [from Eq.( 4.3)], a

frequency considered by some to be too high to apply thin plate theory [27].
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As a final note before ending our analysis of a plane wave incident upon a semi-infinite

elastic plate, we consider the reciprocal problem as defined by a plane wave incident from

the opposite direction. Recall that the Wiener-Hopf kernel K(q) is an even function of q,

for both the local and extended reaction cases. We successfully decomposed this kernel

such that k- (q) k+(-q) = 1, which is a property of even functions and is related to the the

reciprocity condition [64]. Thus, for example, if we set up our problem in the opposite sense:

with the plate boundary condition for x < 0 and free surface boundary condition for x > 0,

we end up with the same kernel, but now find that a pole at q = -kf is captured for x < 0

(rather than q = -kif for x > 0), representing a coupled subsonic flexural wave travelling

in the left direction. Furthermore, the boundary behavior of OD will now be governed by

(-R - 1), rather than (1 + R) as before, but the total diffracted power remains the same.

4.6 Summary

We have examined in detail the problem of a low-frequency monochromatic plane wave

incident upon a free surface coupled to a semi-infinite elastic surface, focussing on sea ice

as the elastic surface. The elastic behavior of the sea ice was modeled by the thin plate

equation. A key issue here is the fluid loading pertaining to sea ice and low-frequency

acoustics, which cannot be characterized by simplifying heavy or light fluid loading limits.

Using an approximate kernel for the Wiener-Hopf equation, valid in this mid-range fluid

loading regime, we proceeded to a complete and interpretable solution of the diffraction

problem.

We determined that the amount of power carried by the cylindrical spreading portion

fIcya of the diffracted field to be in excess of 20 dB greater than that carried by the coupled

subsonic flexural wave HIfLe:, and therefore the latter can be ignored in the low-frequency

ice lead diffraction process. By applying Green's theorem to the properties of the diffracted

field along the boundary, we derived the primary functional dependencies of the diffracted

power on k, H and grazing angle ci, and the ice elastic properties as characterized by the

parameter .
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Chapter 5

Demonstration of a mechanism for

propagation loss associated with

the ice lead diffraction process

In Arctic regions long range oceanic sound propagation is governed by an upward refracting

sound speed profile which gives rise to an acoustic channel bounded from above by the Arctic

ice canopy. The efficiency of long range acoustic propagation, and thus the use of the Arctic

ocean as a communication channel, is significantly influenced by sound interacting with the

complex ice-covered surface.

The effects of this interaction is the subject of considerable research effort focussing on

various characteristics of the ice-covered surface. For example, the effects of a stochastically

rough elastic ice interface have been studied using a perturbation method, in order to

understand the combined effects of ice elasticity and roughness [45]. Scattering of low-

frequency narrow band pulses from ice keels has been examined using a numerical approach

based on the finite difference method [28], and acoustic scattering from a point source below

an open lead has been studied from the viewpoint of laboratory scale model experiments

[52].

The overall effect of the ice surface on sound transmission is due to a combination of

mechanisms, depending on acoustic frequency and Arctic environment. For example, the
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under-ice roughness will be less influential at low frequencies where the acoustic wavelength

is much greater than the rms roughness of the ice surface; or the ice canopy in the cen-

tral Arctic is considered contiguous with few open leads, in contrast to the time-varying,

partially ice-covered surface characteristic of marginal ice zone regions. Our work has ap-

plication to partially ice-covered marginal ice zone waters, and, in particular, to the study

of diffraction effects from the open leads and polynya.

Thus far in this thesis we have viewed the ice lead diffraction process from the standpoint

of diffraction of an acoustic plane wave from a free surface coupled to a semi-infinite elastic

surface. The analysis led to a determination of total diffracted power I1 D, and its prime

descriptors k, H and grazing angle a. Our primary goal in this chapter is to convert these

results, in a simple yet relevant manner, for the purpose of demonstrating a mechanism for

acoustic propagation loss attributed directly to the ice lead diffraction process.

The framework of this demonstration is a set of long range acoustic propagation data

from MIZEX84 (marginal ice zone experiments, June-July 1984), but we emphasize that

we cannot depend on conclusive agreement between theoretical values and experimental

data. Too many important parameters, such as ice floe size and concentration, enter the

problem in the form of only nominal estimates. Furthermore, our analytic results can only

address a small subset of this experimental data. We will, however, indicate a discrepancy

between available theory and experimental data, and show that ice lead diffraction effects

are a plausible mechanism to account for this discrepancy.

The experimental data are in the form of continuous wave (cw) acoustic signals which

were transmitted between two ships separated by approximately 100 km, and propagated

via a partially ice-covered path. The signals were stepped in frequency between 25 and 200

Hz, with each tone lasting 1 h. The acoustic environment was characterized by generally

upward refracting range variable sound speed profiles, an undulating bottom of mean depth

of about 700 m, and a variable ice cover. The overall complexity and range variation of the

acoustic channel is depicted by contours of sound speed using sound-speed profiles every

15 km during the course of the experiment [56] (Fig. 5.1). The acoustic signals analyzed

here were received by a vertical array with six receivers between 72 and 265 m, with the

source being at 78 m depth. The primary data reduction, from received signal to acoustic
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Figure 5.1: Contours of sound speed from data taken every 15 km. The sound speed changes
from approximately 1440 to 1460 m/s, within the top 50-m near-surface channel. Bold black
line denotes the bathymetry. Acoustic source (R/V POLAR QUEEN) is at range 0 km and
vertical receiving array (R/V KVITBJ0RN) is at range 100 km.

transmission loss (TL) in dB referenced to I m, is documented in ref.123].

5.1 Transmission loss analysis based on the ray average

method

Our approach is to examine the MIZEX84 data using ray theory, and view the problem in

terms of a dB loss for each ray interaction with the partially ice-covered surfac2. Essential

to this approach is an accurate estimate of geometrical spreading loss, which must be

frequency independent. We begin by computing the depth-averaged geometrical spreading

loss, or background loss component of total transmission loss, using the ray average method

168,251. The depth average is from the surface to D., or effective depth [25], which we define
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Figure 5.2: Range independent (ensemble averaged) sound speed profile used in the ray
average method.

subsequently. In order to use the ray average method we ensemble average in range the

original sound speed profile data on which Fig. 5.1 is based, and work with a smoothed,

range independent pro'le :n Fig. 5.2.

The effective depth D, of the acoustic channel is the depth above which all rays follow

refracted paths confined to the water column (RSR paths). Rays passing below D, interact

with the bottom (BB paths), and it is assumed that because of higher attenuation this

contribution is neglected from the sound field calculation. We will find that this assumption

limits the frequency range of the experimental data available for this kind of analysis.

Nevertheless, the simplicity of our approach has merit, enabling us to succeed in converting
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depth m sound speed m/s angle from horizontal
surface 1441.0 10.20

50 1460.0 4.20

78 1461.6 3.30
100 1462.1 2.90
300 1464.0 00

Table 5.1: Set of horizontal ray angles used in the ray average method.

our results without introducing further complexity. In choosing De we observe that the

maximum sound speed for the range-averaged profile in Fig. 5.2 occurs at approximately

300 m, with a tendency for slight downward refraction below this depth. Furthermore, the

experimental data above 85 Hz tend to have measured pressure levels which taper off by

2-5 dB for the deepest receiver at 265 m depth. We thus set De g300 m as a nominal value,

which also spans the entire length of the vertical array.

The next step is to determine the source launch angle eL such that all rays with launch

angle 0 satisfy 101 < 0L. From Table 5.1 we find OL=. 0 5 7 , where we have assumed a linear

sound speed gradient between each depth listed in the table. The values in Table 5.1 are

computed by starting with a ray which reaches a vertex at 300 m and tracing this ray to

the surface. The depth-averaged geometric spreading loss derived from the ray averaged

method is

TL = 10log R + 10log D, - 10log 2 0 L (5.1)

and is 84 dB for R =100 km. This becomes our background loss value to which additional

losses will be added. Associated with our ray model is a nominal cycle distance for the vertex

ray which is approximately 16 km. This ray interacts with the surface approximately six

times, with a grazing angle c e 10'.

In working with a range-averaged sound speed profile, we eliminated a prominent range-

dependent aspect from the problem. To assess the significance of this, we also compute a

depth-averaged geometrical spreading loss using the parabolic equation (PE) method [40].

The PE analysis takes into account the lateral heterogeneity in sound speed and bathymetry

as shown in Fig. 5.1. The ocean bottom is modeled as a fluid halfspace with compressional

sound speed 1600 m/s, density 1500 kg/m 3 and an attenuation of .5 db/A. No other loss
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Figure 5.3: Transmission loss in dB ref. 1 m. The solid line through square symbol connects
mean values of MIZEX84 experimental data for discrete frequencies. The solid line through
triangle symbol connects mean values derived from the PE method. For clarity the data
spread, as indicated by the dotted line, is shown only for the experimental data; a similar
data spread exists about the mean values derived from the PE method. Bold solid line at
84 dB is the frequency independent value derived from the ray average method.

mechanisms are incorporated; our purpose here is only to compare with, and lend credence

to, the 84 dB value derived from the ray average method. It is important that the 84 dB

background loss value not be encumbered by a large and unknown variance, since we want

to distinguish the background loss from losses attributed to ice lead diffraction and other

relevent losses.

The PE sound propagation model gives TL as a function of depth, at range 100 km for

a 78-m source depth. The TL values are converted to linear intensity, and the latter are

averaged over the depth range 72-265 m to obtain an estimate of depth-averaged geometrical

spreading loss. The measured transmission loss values for the six receivers spanning the

vertical array are also averaged in the same manner. Both data sets are reported in dB

referenced to 1 m, and thus pertain to the log of the mean transmission loss for the channel

with D, ; 300 m. These values are summarized in Fig. 5.3, with the frequency independent

ray theory value represented by the line at 84 dB.

Data of this nature are always accompanied by a substantial spread about the mean
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value. For both data sets this spread is approximately -2 dB and +4 dB about the mean

value. The asymmetrical spread is introduced by taking the logarithm of the mean depth-

averaged intensity ±1 standard deviation, which serves as a useful measure of variability

1151. We also note there may be an additional spread in the experimental data on the order

of ±1.5 dB, originating from the uncertainties in source level and hydrophone receiving

sensitivities.

We accept the large spread in the data, but now focus on the mean values as shown

by the solid lines. A basic assumption in our demonstration is that the background loss as

computed by the ray average and the PE methods should be less than the corresponding

measured loss. This assumption is correct for frequencies greater than about 85 Hz, where

at 85 Hz the PE and measured data lines reach a cross-over point. One may conclude that

the strong near-surface gradient is of less importance and bottom propagation plays an

increasing role in these waters for frequencies < 85 Hz. This in turn would require more

accurate bottom modeling for the PE method to provide useful estimates of background

loss in this frequency range, an endeavor we do not wish to undertake since bottom mod-

eling introduces additional unknown parameters, and bottom propagation paths are not

consistent with the effective depth concept. For the same reason, the frequency range < 85

Hz also represents a departure from the ray theory value, in that the 84 dB background loss

is now greater than the measured data. Thus we consider frequencies < 85 Hz to be below

the range necessary to isolate a geometrical spreading loss estimate based on the effective

depth concept, with sufficient certainty for our purposes.

The higher frequencies are reported for completeness, but these frequencies are beyond

the limits in applying the thin plate approximation to the ice surface, if H > 2 m. Fur-

thermore, although the PE data continues to track the experimental data with an offset, a

frequency-independent background loss assumption does not hold here, presumably due to

range-dependent oceanographic features which have begun to influence acoustic propaga-

tion. For these reasons we limit the subsequent analysis to the 105 and 125 Hz data, where

we can use the 84 dB background loss value with confidence.
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5.2 Conversion of lD to dB loss per bounce

In order to carry through the conversion of liD to an estimate of dB loss per bounce, we

require a nominal estimate of the incident power II,. In the usual modifications to ray

theory to account. for Fcoustic interaction with a boundary, one assumes the field behaves

locally as a plane wave and the plane wave reflection coefficient provides the necessary

modification of the field. We proceed with the local plane wave assumption, but in our case

the incident power depends upon the range extent 1p of the interacting bundle of rays. One

can obtain a nominal estimate of 1p from the principle of rays being the superposition of

modes of neighboring orders, and the relationship between modal cycle distance and ray

cycle distance. From such arguments one obtains [691
7r

IP ; ja---T  (5.2)

and therefore a nominal estimate of the incident power is

HjI * 5 sin a p. (5.3)
PC

The power balance established in Chapter 3 is

= nR + iD (5.4)

and writing HR = IRI21, we can express Eq.( 5.4) as
i'D

IR12 = 1 - fi. (5.5)

In the above IRI 2 is the squared modulus of the coherent reflection coefficient for a partially

ice-covered surface, which is diminished by edge diffraction processes, and the dB loss per

bounce estimate we seek is 20logjR I. Note that we assume JR12 = 1 in the absence of

diffraction effects. The constant ft is included here in an ad hoc manner, for the purpose

of weighting lID according to ice floe size and concentration. We estimate FL subsequently,

but two remarks are in order before continuing.

First, our idealized two-dimensional geometry presumes that an ice lead diffracts ap-

proximately as a lineal element, an assumption being recognized by others (52]. This means

the diffracting edge is effectively of infinite extent in a direction perpendicular to the x, y
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plane. Let us call this extent of the ice lead L; but the effective lateral extent depends

on the field point of the receiver. That is, if L > 2V r, where r is a field point from

which pressure is measured, then the diffraction process can be considered approximately

two-dimensional, and the diffracted pressure far field behaves as a cylindrical wave with

1/v/ range dependence as we have determined. This follows from the extent L being

much greater than the radius of the first Fresnel zone of the receiver, and thus it can be

considered effectively of infinite extent [67]. Since our diffracted far field behavior applies for

kr >> 1, this is equivalent to L >> 2A/V2, which is a reasonable criterion to satisfy. From

Chapter 3, however, we found it convenient to consider kr very large (e.g. kr = N r 1000

or more) in order to numerically integrate the diffracted intensity and arrive at the total

diffracted power 1iD, and we see that this now requires L > 2Av/ in order to preserve

the same two-dimensional geometric divergence of the diffracted field. For now we accept

this as a drawback in our approach to computing niD, and we refer to some new techniques

for studying diffraction from edges with finite extent in Chapter 6.

Our second remark concerns the semi-infinite approximation for the range extent of

the ice floe in the x-direction. In Chapter 4 we showed that along the boundary at range

x = I _> A, the diffracted field has diminished in excess of 24 dB. This suggests that when

two diffracting edges are involved, with separation 1i such that ki > 1, a natural first

approximation is to consider each edge as arising from separate half-planes [59]. In this

demonstration we will find it likely that more than one edge can be ensonified, for example,

both leading and trailing type edges separated by 1i (ice range extent) or .,, (free surface or

water range extent). In these cases we add the individual edge diffracted powers incoherently

and ignore the interaction field [59] due to the proximity of the diffracting edges, where the

interaction field is O(1/kv2i) and d = 14 or l.

5.2.1 Disk model for partially ice-covered surface

Our final task is to estimate n which depends on the characteristic size of the ice floes and

concentration. An elaborate probabalistic model is not warranted here; we are simply after

some reasonable mean values of 1i and 1, which we denote as 1i and 4,. For this purpose we

have adopted a model used to study ice floe collisions for floe fields typically encountered
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razndom transects

D

Figure 5.4: Isotropic distribution of uniform disks of characteristic diameter D, sampled by
a random transect.

in the marginal ice zone [65].

In this model the ice floe field is viewed as an isotropic distribution of identical disks

(Fig. 5.4). For our problem a random transect across this idealized floe field will intersect

N floes/unit length in total range, with

4C
N= -- (5.6)

where D is the floe characteristic diameter and C is the percent of surface ice coverage. The

random transect bisects each floe such that the mean range extent of an ice floe as sampled

by the transect is the mean chord length, giving

i D. (5.7)

We now have the necessary information to produce a nominal estimate of the likelihood

of ensonifying an ice floe leading or trailing edge, which we do in the following example. The

characteristic diameter for ice floes in the vicinity of the MIZEX84 acoustic transmission

experiment was approximately 100 m [51]; thus we set D s 100m. The ice coverage varied

on a daily basis; on the day these measurements were taken (19 June, 1984) the coverage
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was approximately 30% as determined by microwave remote sensing [101, and therefore we

set C - .3. The number of floes intersected in the 100 km transmission path was therefore

4C-- 100 s 382. (5.8)

From Eq.( 5.7) the mean range extent of an ice floe along the transect is Ii f 79 m or

khi P 36 for 105 Hz. We derive an estimate of the mean water-covered extent from Ii and the

concentration, giving k1 f 183 or kI. s 83 for 105 Hz. At this floe size and concentration

the diffracting edges are sufficiently separated to apply our semi-infinite approximation and

we consider each leading and trailing edge as a separate diffraction feature and add the

diffracted powers incoherently.

The total number of diffraction features per m is 2.382/100 km=.0076, and the mean

number of features f! ensonified during each interaction with the surface is given by

F & , .0076. (5.9)

We determined the nominal grazing angle to be a - 100, and using Eq.( 5.2) 1p _226 m for

105 Hz, we arrive at n - 1.72.

The ice floe thickness in the region varied from 1 to 5 m, with the peak of sample

density functions near 2 m [31], and therefore we use H f 2 m in order to compute 1 iD in

the manner described in Chapter 4. Our estimate for dB loss per bounce is finally computed

from

-10log(, - If

H-I

which is .7 dB at 105 Hz. The total loss due to diffraction depends on the number of

ray surface interactions; from the ray average method we estimated this number to be six,

thus giving a total diffraction loss f 4 dB. For 125 Hz, 1p - 190 m giving n % 1.44 and a

total diffraction loss % 3.3 dB. (Note that use of ft inside the logrithm, is consistent with

presenting the logarithm of the mean transmission.)

We next take inventory of other loss mechanisms contributing to the total transmission

loss. For volumetric absorption we use an empirical result which applies to sub-Arctic

waters [9] giving bi =.002 dB/km at 105 Hz and .003 dB/km at 125 Hz. Volume scattering
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loss from ocean dynamical features such as eddies and fronts is estimated from [541 using

ocean dynamical parameters for the marginal ice zone given in 126]. The parameters are

J2 r 2.5 10- 5, which is the rms spatial contrast in index of refraction, and L, 10km,

which is the spatial scale of the ocean feature. These give b2 = .015 dB/km or about 1.5

dB for 100 km as a frequency-independent value.

The majority of theoretical estimates of loss due to ice roughness are based on a ran-

domly rough ice-water interface, where the rms roughness and correlation length is assumed

known. It is unclear how the open water areas in the marginal ice zone affect the statistical

stationarity assumptions inherent in these estimates. For our purposes, we adopt &3 = '-

db/km [55], where f is frequency in Hz, as a nominal estimate, and assume an effective

range for loss due to ice roughness which is approximately equal to the ice concentration

percentage of the total range. Thus, for example, 63 = .051 dB/km at 105 Hz, which we

apply to an effective range of 30 km for C .3, giving a total loss due to roughness of

about 1.5 dB.

The additional losses attributed to the ice lead diffraction process (DL), volume scat-

tering loss (VL), ice surface roughness (SRL) and volumetric absorption loss (AL), are

summarized in Table 5.2 for 105 and 125 Hz. These are added to the 84 dB background

loss for an estimate of total transmission loss (est. TL). Included is a likely range of ice

concentration and floe sizes, with our best estimate (C - .3, D - 100 m) in the top entry.

Our estimated TL at 105 and 125 Hz compares favorably with the measured transmission

loss (meas. TL) when C ; .3. We emphasize, however, that the floe concentration and

size estimates are only nominal values, and we do not have a proper statistical, or "ground

truth", description of the overall ice conditions. We also admit to being fortunate in that

the ice floe concentration was relatively low on the day of the experiment. Had the ice

concentration been greater, e.g. C > .75, we could not justify the conditions k71 , kl, > 1,

a necessary condition to convert our values of rID to a diffraction loss estimate.

For completeness we plot in Fig. 5.5 the DL for the entire frequency range 25-125 Hz

using H = 2m and the same range of floe sizes and ice concentrations. We observe an

interesting maximum in DL at about 85 Hz. Let us recall Eq.( 4.105) giving the parametric

dependence for total diffracted power from a semi-infinite elastic half-plane. Using the small
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conc/size C/D freq DL VL SRL AL est. TL meas. TL
.3/100 105 Hz 4.1 1.5 1 .5 .2 91 89

125 Hz 3.3 2.0 1.5 .3 91 90

.3/200 105 Hz 2.0 1.51 1.5 f.2 89 89
125 Hz 1.6 2.0 1.5 .3 89 90

.5/100 105Hz 7.4 2.6 1.5 .2 96 89
125 Hz 5.8 3.3 1.5 .3 95 90

.5/200 105 Hz 3.4 12.61 1.5 .2 J 92 89
125 Hz 2.7 3.31 1.5 1.3 92 90

Table 5.2: Additional losses in dB attributed to ice lead diffraction (DL), volume scattering

(VL), ikd surface roughness (SRL) and volumetric absorption (AL), which are added to an

84 dB background loss.

angle approximation for grazing angle ci, we write this dependence as

lID = AkH'k 2 [1 - 2 (kh) 2I (5.10)

where A, is a constant we need not specify further, and the parameter = .33 which relates

to the properties of the sea ice and ambient medium. The dB loss per bounce estimate takes

the form

AjkH 2 ,2[1 - 2'(kh)21f.

PC P

Since fz is proportional to 1P, the above simplifies to

f(k) = -10log{1 - A2kj1 - 2C(kH) 2I} (5.11)

where all frequency-independent constants are absorbed into the constant A 2 . Finally, by

taking the derivative with respect to k of Eq.( 5.11), we find a local maximum at

1 1
k =-- (5.12)

which translates to approximately 85 Hz for H =2 m. Equation( 5.12) may prove useful in

considering the acoustic channel filtering properties for partially ice-covered waters.

5.3 Summary

In this chapter we tied together earlier results for total diffracted power lID, with numbers

C and D representing ice floe concentration and characteristic size, respectively. The result
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Figure 5.5: Estimated DL as a function of frequency for 100 km range and 2-m nominal ice
thickness. Each line represents a different combination of ice coverage percent and ice floe

characteristic size.
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was converted to an estimate of acoustic transmission loss attributed directly to the ice

lead diffraction process (DL). This component of total transmission loss was compared to

components attributed to volumetric scattering (VL), ice surface roughness (SRL), and vol-

umetric absorption (AL). Analysis of acoustic propagation data from MIZEX84 indicated

a discrepancy between available theory and measured values for 100 km transmission loss.

Subsequent comparison of the MIZEX84 data with transmission loss values derived from

the ray average method was limited to the data at 105 and 125 Hz, and it was shown here

that ice lead diffraction effects are a plausible mechanism to account for this discrepancy.
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Chapter 6

Conclusions and suggestions for

future research

In this thesis we have examined in detail the essential physics of the acoustic diffraction

process due to a plane wave interacting with a two-part planar surface characterized by

different boundary conditions. We have focussed on a free surface coupled to an ice-covered

surface for the purpose of understanding the effects of diffraction from ice leads in long

range acoustic propagation.

We began in Chapter 2 by deriving an exact solution to a canonical problem concerning

diffraction from a free surface coupled to a perfectly rigid surface. The exact solution to this

particular problem has not been shown before. The solution is derived from the Wiener-

Hopf method which gave the Fourier transform of the diffracted field, and the inversion of

this Fourier transform was facilitated by partitioning the diffracted field into component

fields.

In Chapter 3 we argued the merits of a locally reacting approximation for the input

impedance of an ice sheet for low frequencies, and the perfectly rigid surface was replaced

by an ice surface characterized by a locally reacting finite impedance. Inclusion of the

finite impedance boundary condition greatly complicated the kernel decomposition step

in the Wiener-Hopf procedure. An approximate kernel, based on matching the moments

of the exact kernel, was used here which enabled us to proceed to a complete and readily
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interpretable solution for the diffracted field OD. Important properties of OD were developed,

such as its relation to 1 + R(a), where R(a) is the ice reflection coefficient evaluated at

grazing angle c, and a power balance among incident, reflected and diffracted fields was

demonstrated.

The groundwork of Chapter 3 was utilized in Chapter 4 in the solution of the problem

of a plane wave incident upon a free surface coupled to a semi-infinite elastic plate, which

serves as a model for the ice lead diffraction process. The thin plate approximation for the

ice impedance was shown to be a natural extension of the locally reacting approximation,

with effects of ice elasticity being ignored in the latter. A new approximate kernel for the

Wiener-Hopf solution technique was developed here. This kernel retains the properties of

the coupled flexural wave, and is valid in the fluid loading conditions which pertain to sea

ice and low-frequency acoustics (kH < 1). By using Green's theorem, in conjunction with

behavior of the diffracted field along the boundary, we determined the dependence of total

diffracted power rD on k (frequency), H (ice thickness) and a (grazing angle), in addition

to the combined elastic properties of the ice sheet and ambient medium.

Finally in Chapter 5 we developed a means to convert IID into an estimate of dB loss

per bounce, using an approach based on the ray average method. Our purpose here was to

demonstrate a mechanism for acoustic propagation loss attributed directly to the ice lead

diffraction process. As a framework for this demonstration, we analyzed a set of acoustic

propagation data from MIZEX84. The analysis indicated a discrepancy between available

theory and measured values for 100 km transmission loss, and it was shown that ice lead

diffraction effects are a plausible mechanism to account for this discrepancy.

6.1 Suggestions for future research

In this thesis we pursued an analytic approach to the diffraction problem, which gave us

additional insight into the mathematical and physical structure of the acoustic field due

to range discontinuities. In particular, our focus on the solution of the water-to-ice planar

diffraction problem using the Wiener-Hopf method has given us useful insights into the ice

lead diffraction process. Our solution, with the problem framed in idealized two-dimensional
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geometry, is a logical first step to a more complete understanding of low-frequency acoustic

interaction with a partially ice-covered surface. In the following we mention some research

areas that extend from this work.

6.1.1 General oblique incidence

The two-dimensional geometry assumes the diffracting edge lies along the z-coordinate (the

out-of-page coordinate in Fig. 2.1), and the incident field lies entirely in the x,y plane.

With this geometry, there is no dependence of OD on the z-coordinate. We can introduce

z-dependence by allowing the angle between the z-axis and the direction of the incident

field to be arbitrary (oblique incidence) instead of being ir/2. Calling this angle -1, we now

have for the incident field

01(X, Y, z) = e cos ain sin ain cos (61)

where setting -y = ?r/2 recovers our original incident field confined to the x,y plane. We

obtain a three-dimensional solution (with the restriction that the edge discontinuity re-

main along the z-axis) from our two-dimensional solution by replacing k with k sin -I and

multiplying by eik cos - (731.
A related issue concerns the probability distribution for the ice floe leading and trailing

edge orientations with respect to the acoustic propagation path. The analogous problem

has been addressed for the scattering from lineal ice keels, where the classic Buffon needle

problem [60] from probability theory was used to derive the orientation probability density

function [34]. In our case the random variable corresponding to the orientation is the angle

-y, and we note that the expected value of -1, when modeled by a Buffon needle process, is

indeed 7r/2.

6.1.2 Finite extent L

The two-dimensional solution also assumes the diffracting edge is of infinite extent in the

z-direction or perpendicular to the z, y plane. The diffracted field therefore takes on the

appearance of a field radiated by an infinite line soure in the z-direction, with the general

134



form
@ikr

OD (r, 0) - F (9) v r .  (6.2)

Recent work [67] on sound scattering by finite length cylinders, has shown that the solution

for a finite length cylinder can be obtained from the infinite length counterpart through

effectively integrating the latter over the length of the cylinder. Equation( 6.2) is analogous

to the scattered field for an infinite length cylinder, provided the field point does not lie in

the transition region. An interesting approach would be to this method to our solution in

order to examine the effects of finite extent L.

6.1.3 Further use of the locally reacting approximation

In Chapter 3 we studied the locally reacting approximation for the input impedance of an

ice sheet, where

Z.= -iwplH (6.3)

which we found to be a useful initial step towards the solution of the full elastic ice diffraction

problem in Chapter 4. For low frequencies such that fH E 50 (where in this range we

showed that the locally reacting approximation was quite accurate) it would be interesting

to exploit this approximation further, by studying range-dependent ice thickness variation

in which the ice impedance assumes the form

Z ,(x) = -iwpiH(x). (6.4)
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Appendix A

Asymptotic evaluation of integrals

Integrals of the form

fJ Q(#)eikr co$(P-$)d6 (A.1)

are evaluated asymptotically in this appendix. This integral represents a superposition of

plane waves weighted by the angular spectral function Q(fi). The contour r is the same

contour shown in Fig. 2.4. For kr > 1 there is exponential decay in the integrand for values

of # away from the saddle point at 0 = 0, and the contribution of r in the vicinity of 6 = 0

constitutes the first order contribution to the integral.

The contour I is deformed into the steepest descent path (SDP) contour r$, and in the

vicinity of P = 0 we use the transformation

cos(p - 0) = 1 + ir 2  (A.2)

changing Eq.( A.1) into
v/2 e'- - l e-" dr.c 'T" (A.3)

2

If the function Q(,8) is slowly varying in the region of the saddle point 0 = we can bring

this factor outside the integral, giving

vf_[k- -Q(O)-0[ - ...] krr dr (A.4)

where we have used a Taylor series to represent the square root factor. Term by term
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integration gives

(1 - +  (A.5)
(kr)4  8(k'r)',

Note that the next order term is 38 dB down from the leading order term at kr = 10.
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Appendix B

Approximation of the

Wiener-Hopf kernel and

subsequent multiplicative

decomposition for local reaction

case

We can write the Wiener-Hopf kernel K(q) as

K(q) = V/2 - k2 [1 + (B.1)

where the factor in brackets is k(q) and is approximated as follows:

= (12 + k2 + q2) (q2 - k2A) (B.2)

VrY\kY/qT '. + NO (q2 - k2 A2)2.2

The unknowns A2 and A2 are determined by matching the area and first three moments of

the inverse Fourier transform of k(q); these depend on the integer parameter N = n 2 which

determines the relative height of the branch points of vfqT + N-k above and below the

real q axis. To match the moments, one uses the moment generating relationship between
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transformed quantities, giving the matching equations

dm(q) dm k(q)dq.-- -"d---- (B.3)
dqm  dqm

which are evaluated at q = 0.

The result, with non-dimensional parameter A defined here as ,q/k, is

2nA 2 A
A I -- A 2  A2 (B.4)

where
A, A= 2 + A( 2i-2) + A2 + (_2i _2) (B.5)

nI nl n n

A2=: -iA+3- 1(B.6)

such that

k(q) = '/ -7' (q). (B.7)

The four moment match (m = 4) gives a very accurate approximation with an error

of a few percent in the homogeneous (q < (kl) region of the spectrum (Fig. B.1). For the

inhomogeneous (q > Ikl) region the approximation is less accurate; although we utilize only

the homogeneous portion of the final plane wave spectrum in the inversion to the diffracted

far field, and the necessary property of the ratio K/k - 1 as q -+ oo is maintained.

The multiplicative decomposition of k(q) is defined as

k~)=k-(q) (B.8)k )=k+ (q)"

With this definition, zeroes and poles of k(q) in an upper (lower) half-plane are defined

as '-' ('+') functions [59]. (The upper and lower half-planes are established by the branch

cuts of V as discussed in Chapter 2.) For example, two zeroes of the kernel originate

from

q2 + k +, = (q + iV/k +,q). (q - iV2 +,q). (B.9)

The factor (q+i\/ 7i7) is a zero in the lower half-plane and is classified as a '+' function,

and in the same manner (q - ivlT ) is classified as a '-' function. The complete

decompositon of Eq.( B.7) is

k-(q) = (q - i k_+7) (q - kAj)(B10
(q - kA2 ) (B.10)

139



2

1.5

0.5

0
0 1 2l 3

Figure B.1: Comparison of the modulus K(q) (solid line) with k(q) (dashed line) for 30
Hz, H = Im and pi = .92.
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A+ 
L

A+A

strip between ±zk2
as defined in Fig. 2.2

Figure B.2: Upper and lower half-planes of the approximate kernel as defined in the complex
q-plane.

k+ (q) - q + =%n (q + kA 2)

k (q) (q + (q + kA)

The regions of analyticity for k- and k+ are determined by

A- - k= m(A.2) + k2Re(A2) A+ = kilm(A) + k2 Re(AJ (B.11)

such that k- is analytic for Im(q) < A. and k+ is analytic for Im(q) > -A+. (Note that

k2 is either a small positive constant or zero). These regions are shown in Fig. B.2.

The parameter N is a positive number, adjusted to optimize the phase coherence between

K(q) and k(q). Its upper bound is determined by the requirement

A+, A- > 0 (B.12)

141



in order to maintain the '+' and '-'function definitions. For example, N is typically O(10),

establishing A+ and A- as O(k).

Finally, a comparison of k- (q) with one obtained via an asymptotic decompositon [22]

for t7 - 0 (which can be viewed as a perturbation from a perfectly rigid surface) show

agreement within 1 percent for magnitude and phase. For this case we use N = -I and

n = -i (consistent with the established branch cuts), which we find to more accurately

approximate the kernel when q} < 1. With the choice of either N = -1 or N = a positive

integer, the entire range of locally reacting boundary conditions from Neumann to Dirichlet

is spanned.
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Appendix C

Approximation of the

Wiener-Hopf kernel and

subsequent multiplicative

decomposition for extended

reaction case

In this Appendix we develop the approximate kernels used in the extended reaction case,

which do not depend upon a small fluid loading parameter and therefore are valid in the

fluid loading regime characteristic of sea ice and low-frequency acoustics. Three different

approximations ae developed here. Part I presents the details of the approximate kernel

which represents an extension of the technique of matching moments as discussed in Ap-

pendix B. This kernel is k(q) and its decomposition into k_/k+ is the one employed in the

diffracted field plane wave spectrum [Eq.( 4.46)], and it has the necessary accuracy in the

homogeneous region of the plane wave spectrum, along with accurately characterizing the

pole at q = kf. We also employ two additional kernels solely for use in the coefficient matrix

[Eq.( 4.53)] and right-side column vector [Eq.( 4.54)]. These are rrferred to in this thesis

as tagged kernels and details of their development are given in Part II of this Appendix. In
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Part III we compare our results with an asymptotic result available in the literature.

Part I: matched moment kernel

As in Appendix B we write the kernel as

K(q) k2[4 +1 - gI (0.1)
f

and focus on the bracketed term k(q) which is approximated as follows

k(q)=r2 (7 2 +k2 + q2 ) (q2 - kVA2 ) 1-q4(.
= :-/~q-+ Nk" (q, - k2A)( ) (0.2)

Apart from the parameter rl, and (I - F4) which we will call the root factor, k(q) is the
f

same as the one developed in Appendix B. We proceed to match the area plus first three

moments of k(q) in the manner of Appendix B and thereby determine the two unknowns

A, and A 2 . The result using the parameter A equal to //k is

A2 nA2 A2 ~At
S(A+i)r' A2 - A (C.3)

where

Al = Ar2 + x (ri -2) + Ar,- + (-i -2) (C.4)
n n n n

-A2  .1

A2 = --- - iA + (3 -- ) (C.5)

such that
k'Cq) = V/q2 - Vk2 (q). (C.6)

We insert a parameter ri = (kf /kl)" to recover the correct asymptotic property

liaK(q)

9lim K(q) (0.7)q-oo K 1q).7

The multiplicative decomposition of k(q) is defined as

KC=(q) (C.8)
k+ (q)

which we write down in exactly the same manner as in Appendix B, with the additional

decomposition of the root factor, giving

K_(q)-=i/' + -7T) (q - kAj.l))( eE (C.9)

VF~t J~n (q - A2) f k
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_________+ ____ (q + kA 2 ) (+q)g+(,)1-r1(q+i k2+7) (q+kA l C + f .(- ]'e

Decomposition of the root factor is done by inspection, with one of the factorizations,

(1 - J-), having a zero at q = kf, for example. This zero is in the upper half of the complex

q-plane because T! may lie on the real q-axis, or just above it if we allow for damping of

the coupled flexural wave; but it never lies below the real q-axis. Following our pole/zero

allocation rules, this factorization is properly assigned to the '-' function classification, and

since the zero at q = kf becomes a pole in the diffracted field plane wave spectrum, the '-'

function assignment correctly results in the pole being captured for z > 0 only.

Part II: tagged kernels

In this part we develop two additional approximate kernels, one which tags the value of the

exact kernel at q = ±lcj (kf-tagged), and the other which tags the value at q = ±ik/ (ikj-

tagged). Results from the tagged kernels are used in the coefficient matrix for recovering the

constants eo and el. It is emphasized here that the tagged kernels represent an alternative

approximation to the same exact kernel, and thus we could, in many cases, complete the

solution using only one approximate kernel to represent all the critical regions in the complex

q-plane. These regions are: the q < k or homogeneous region, q = ±kf, +ikf, and the q = k1

region where the kernel goes through a zero point. We are simply using the tagged kernels

where we know they perform be. at q = ±kf, ±ikf, a region the matched moment kernel

is not specifically designed for.

The tagged kernels assume the same initial form as Eq.( C.2). Both versions of tagged

kernels are given the same area or zeroth moment as the exact kernel; this puts

AI ( + i)r1  (c.10)

We now find the other unknown A 2 by tagging the value of the exact kernel at a fixed point

in the complex q-plane. The tag at q = k! (also -k!) gives

A1 = r2 (1 - 4') (C.11)
n

A2 -- 0 (C.12)
(A+ i)r1
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with

q k2iN + k 2

(r1 - 1)(k 2 + 72 + k ) (.13)

and r2 = (k 1 /k) 2 . The tag at q - ik! (also -ik 1 ) gives

Al = r2(= - 1) (C.14)

A2  (-+ 1  P (C.15)

with
'( - 1)(k 2 + N- k2) (c.16)

and we determine A by the ratio A1/A 2 as as in the matched moment kernel.

The three approximate kernels are shown in Fig. C.1 for the ice plate example presented

in Chapter 4 (50 Hz, H=2 m). In this example k! = .419814 and kf = .509958. Each

kernel approximation will pass through a zero at q = k! (q/k f 2.35 on the plots). Fig-

ure CA(bottom) is the matched moment kernel and it tracks the homogeneous (q/k < 1)

region of the exact kernel in both magnitude and phase with a maximum relative error

of 3%. The maximum error occurs near the end of the homogeneous region and for the

majority of this region the relative error is on the order of 1%. The exact behavior through

the zero point is also completely reproduced in magnitude and phase.

We see, however, that the matched moment kernel is less accurate in the critical area at

q = k! (q/k f 1.94 on the plots). Thus we resort to the ky-tagged kernel in Fig C.I(middle).

Here the magnitude and phase properties of the exact kernel at q = k! are precisely repro-

duced. The performance of the kf-tagged kernel through the zero point is noteworthy. The

kf-tagged kernel will always track the slope of the exact kernel as it passes through the zero

point, because the critical points in determining the slope, q = k! and q = kf1 , are precisely

matched. For the ice plate examples studied in this thesis, either the matched moment

kernel or kf-tagged kernel is adequate for tracking the slope through the zero point region.

But one may encounter cases, such as the low-frequency, heavy fluid loading comparison

example presented below, where the ky-tagged kernel clearly performs better. Finally we

have the ikj-tagged kernel in Fig. C.1(top) which at first glance appears to display none of
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the above properties we are looking for. But its sole purpose is to provide a good estimate

off the real q-axis at q = ±ikf, for which it is precisely matched.

Part III: Comparison of the approximate kernel performance with

available asymptotics

Let us compare the performance of our approximate kernels and subsequent decomposition,

with an available asymptotic decomposition given in ref.[21]. Since we set up our problem

and go about the kernel decomposition in a slightly different manner, thq necessitates com-

paring a modification of our decomposition, e-ik/k+, to their asymptot. decomposition

K+. The asymptotic decomposition is valid only in the limit of low-frequency, heavy fluid

loading. A typical example in this regime is a .25 m-thick steel plate immersed in water

and ensonified at a frequency of 5 Hz.

Results of a comparison from this example are presented in Table C.1. The left side of the

table shows results frcm our suitably modified approximate kernels (including the double-

sided fluid loading) but denoted here as simply k+, the right side shows the asymptotic

result K' as derived from ref.[21]. The results represent the three critical regions in the

complex q-plane. The matched moment kernel is used in the homogeneous region; the kf-

tagged kernel is used at q = kf, and the q = ikf-tagged kernel is used at q = ikf. The

kf-tagged kernel is also used at q = kf because it more accurately tracks the slope of the

exact kernel in this low-frequency, heavy fluid loading example. The proper phase relation

between the two sets of complex results is evident, with the maximum relative differcnce

(Ik+I/IK-I) being , 5%. Finally, the equations in ref.[21] from which the asymptotic results

were derived, arise from considerable manipulation of the small fluid loading parameter in

order to come up with a usable expression. The small parameter in this case is M [Eq.( 4.8)],

and the expressions are presented in the form of a series expansion in M, with complicated

coefficients which themselves are reported only to leading order. Considering this, a 5%

relative difference appears quite justified.
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Figure C.1: Comparison of the modulus of extended reaction kernel K(q) (solid line) with
k(q) (dashed line), bottom: matched moment kernel, middle: kf-tagged kernel, top:
ikf -tagged kernel. Normalized wavenumber (q/k) is used with q/k < 1 representing the
homogeneous wavenumber spectrum.
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region Re(K+) Im(K+) Re(K ) Im(K)

q = 0 -.0016 -.0805 -.0006 -.0802
q =.5k -.0047 -.0837 -.0032 -.0820

q = .95k -.0083 -.0872 -.0063 -.0840
q = k! -. 1699 -.1065 -. 1499 -. 1200
q =ikf .1480 -. 1893 .1268 -. 1856
qT= -.2767 -.0920 -.2603 -.0900

Table C.1: Comparison of the performance of the approximate kernels with an available
asymptotic decomposition, in the three critical regions of the complex q-plane.
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